Suppr超能文献

使用银/氧化铁复合纳米吸附剂去除放射性碘

Removal of Radioactive Iodine Using Silver/Iron Oxide Composite Nanoadsorbents.

作者信息

Zia Mah Rukh, Raza Muhammad Asim, Park Sang Hyun, Irfan Naseem, Ahmed Rizwan, Park Jung Eun, Jeon Jongho, Mushtaq Sajid

机构信息

Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan.

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea.

出版信息

Nanomaterials (Basel). 2021 Feb 26;11(3):588. doi: 10.3390/nano11030588.

Abstract

Efficient and cost-effective removal of radioactive iodine (radioiodine) from radioactive contaminated water has become a crucial task, following nuclear power plant disasters. Several materials for removing radioiodine have been reported in the literature. However, most of these materials exhibit some limitations, such as high production cost, slow adsorption kinetics, and poor adsorption capacity. Herein, we present silver/iron oxide nanocomposites (Ag/FeO) for the efficient and specific removal of iodine anions from contaminated water. The Ag/FeO were synthesized using a modified method and characterized via scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. This adsorbent showed a high adsorption capacity for iodine anions (847 mg/g of the adsorbent) in pure water. Next, Ag/FeO was applied to the removal of radioiodine, and high removal efficiencies were observed in water. In addition, its desalination capacity was retained in the presence of competitive ions and varied pH. After the adsorption process, Ag/FeO was easily removed from the water by applying an external magnetic field. Moreover, the same operation can be repeated several times without a significant decrease in the performance of Ag/FeO. Therefore, it is expected that the findings presented in this study will offer a new method for desalinating radioiodine in various aqueous media.

摘要

在核电站灾难之后,高效且经济地从放射性污染水中去除放射性碘(放射性碘)已成为一项关键任务。文献中报道了几种用于去除放射性碘的材料。然而,这些材料大多存在一些局限性,如生产成本高、吸附动力学缓慢以及吸附容量低。在此,我们展示了银/氧化铁纳米复合材料(Ag/FeO),用于从污染水中高效且特异性地去除碘阴离子。采用改进方法合成了Ag/FeO,并通过扫描电子显微镜、透射电子显微镜和X射线衍射分析对其进行了表征。这种吸附剂在纯水中对碘阴离子表现出高吸附容量(847毫克/克吸附剂)。接下来,将Ag/FeO应用于去除放射性碘,在水中观察到了高去除效率。此外,在存在竞争离子和不同pH值的情况下,其脱盐能力得以保留。吸附过程结束后,通过施加外部磁场可轻松将Ag/FeO从水中去除。而且,相同操作可重复多次,而Ag/FeO的性能不会显著下降。因此,预计本研究的结果将为在各种水性介质中脱除放射性碘提供一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc6/7996965/264da3483cdd/nanomaterials-11-00588-g001.jpg

相似文献

1
Removal of Radioactive Iodine Using Silver/Iron Oxide Composite Nanoadsorbents.
Nanomaterials (Basel). 2021 Feb 26;11(3):588. doi: 10.3390/nano11030588.
2
Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions.
J Environ Radioact. 2023 Sep;265:107211. doi: 10.1016/j.jenvrad.2023.107211. Epub 2023 Jun 16.
3
Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent.
J Hazard Mater. 2013 Feb 15;246-247:199-205. doi: 10.1016/j.jhazmat.2012.12.008. Epub 2012 Dec 10.
5
Synthesis and Characterization of Silver-Modified Nanoporous Silica Materials for Enhanced Iodine Removal.
Nanomaterials (Basel). 2024 Jul 3;14(13):1143. doi: 10.3390/nano14131143.
6
Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/FeO nanocomposite.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2022;57(13-14):1146-1167. doi: 10.1080/10934529.2022.2162794. Epub 2023 Jan 5.
7
Removal of sulfamethoxazole antibiotic from aqueous solutions by silver@reduced graphene oxide nanocomposite.
Environ Monit Assess. 2019 May 18;191(6):374. doi: 10.1007/s10661-019-7494-0.
8
Viologen-functionalized magnetic material for the removal of Iodine and benzanthracene in an aqueous solution.
Environ Sci Pollut Res Int. 2023 Jun;30(27):69991-70010. doi: 10.1007/s11356-023-27096-w. Epub 2023 May 4.
10
In-situ deposition of silver-iron oxide nanoparticles on the surface of fly ash for water purification.
J Colloid Interface Sci. 2015 Sep 1;453:159-168. doi: 10.1016/j.jcis.2015.04.044. Epub 2015 May 5.

引用本文的文献

1
High Removal Efficiency of Radioactive Iodine with In Situ-Synthesized AgO-Mg(OH) Plate Composites.
ACS Omega. 2025 Mar 5;10(10):10251-10260. doi: 10.1021/acsomega.4c09661. eCollection 2025 Mar 18.
3
Recent Advances in the Removal of Radioactive Iodine and Iodide from the Environment.
ACS ES T Water. 2023 Aug 11;3(8):2009-2023. doi: 10.1021/acsestwater.3c00111. Epub 2023 Jul 5.
4
Nanostructured Materials and Advanced Processes for Application in Water Purification.
Nanomaterials (Basel). 2023 Feb 7;13(4):654. doi: 10.3390/nano13040654.
5
Facile Preparation of MCM-41/AgO Nanomaterials with High Iodide-Removal Efficiency.
Nanomaterials (Basel). 2022 Oct 20;12(20):3678. doi: 10.3390/nano12203678.

本文引用的文献

1
Porous sorbents for the capture of radioactive iodine compounds: a review.
RSC Adv. 2018 Aug 17;8(51):29248-29273. doi: 10.1039/c8ra04775h. eCollection 2018 Aug 14.
3
Highly efficient removal of iodine ions using MXene-PDA-AgO composites synthesized by mussel-inspired chemistry.
J Colloid Interface Sci. 2020 May 1;567:190-201. doi: 10.1016/j.jcis.2020.02.015. Epub 2020 Feb 6.
8
Patient-Perceived Lack of Choice in Receipt of Radioactive Iodine for Treatment of Differentiated Thyroid Cancer.
J Clin Oncol. 2019 Aug 20;37(24):2152-2161. doi: 10.1200/JCO.18.02228. Epub 2019 Jul 8.
9
High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel.
J Hazard Mater. 2019 Jul 5;373:705-715. doi: 10.1016/j.jhazmat.2019.04.005. Epub 2019 Apr 3.
10
Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
J Hazard Mater. 2019 Feb 15;364:441-448. doi: 10.1016/j.jhazmat.2018.10.049. Epub 2018 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验