Yoshida Kouki, Sakamoto Shingo, Mitsuda Nobutaka
Technology Center, Taisei Corporation, Yokohama, Kanagawa, Japan.
Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Bio Protoc. 2019 Aug 5;9(15):e3327. doi: 10.21769/BioProtoc.3327.
Lignocellulosic biomass is a versatile renewable resource for fuels, buildings, crafts, and biomaterials. Strategies of molecularly designing lignocellulose for industrial application has been developed by the discoveries of novel genes after the screenings of various mutants and transformed lines of whose cell walls could be modified in the inflorescence stem, a model woody tissue. The mechanical properties are used as a quantitative index for the chemorehological behavior of the genetically modified cell wall in the tissue. This parameter can be measured with tensile or bending tests of tissue explants, the vibration analysis of tissue behavior or using atomic force microscopy to probe the tissue surface. Here, we describe in detail the procedure to determine the stiffness of methanol-fixed, rehydrated and pronase-treated inflorescence explants with a tensile testing machine based on classical methods for the determination of cell wall extensibility.
木质纤维素生物质是一种用于燃料、建筑、工艺品和生物材料的多功能可再生资源。通过筛选各种突变体和转化株系,发现了新的基因,从而开发出了针对工业应用进行木质纤维素分子设计的策略,这些突变体和转化株系的细胞壁可在花序茎(一种典型的木质组织)中得到修饰。机械性能被用作该组织中基因修饰细胞壁化学流变行为的定量指标。这个参数可以通过组织外植体的拉伸或弯曲试验、组织行为的振动分析或使用原子力显微镜探测组织表面来测量。在这里,我们详细描述了基于经典的细胞壁伸展性测定方法,使用拉伸试验机来测定甲醇固定、复水和经链霉蛋白酶处理的花序外植体刚度的步骤。