Suppr超能文献

基于虚拟引导的多自治水下机器人复合神经学习协同跟踪控制。

Virtual Guidance-Based Coordinated Tracking Control of Multi-Autonomous Underwater Vehicles Using Composite Neural Learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Dec;32(12):5565-5574. doi: 10.1109/TNNLS.2021.3057068. Epub 2021 Nov 30.

Abstract

This article proposes a virtual leader-based coordinated controller for the nonlinear multiple autonomous underwater vehicles (multi-AUVs) with the system uncertainties. To achieve the coordinated formation, a virtual AUV is set as the leader, while the desired command is designed using the relative position between each AUV and the virtual leader. The controller is designed based on the back-stepping scheme, and the online data-based learning scheme is used for uncertainty approximation. The highlight is that compared with previous learning methods which mostly focus on stability, the learning performance index is constructed using the collected online data in this article. The index is further used in the composite update law of the neural weights. The closed-loop system stability is analyzed via the Lyapunov approach. The simulation test on the five AUVs under fixed formation shows that the proposed method can achieve higher tracking performance with improved approximation accuracy.

摘要

本文针对具有系统不确定性的非线性多自主水下机器人(multi-AUVs)提出了一种基于虚拟领导者的协调控制器。为了实现协调编队,设置了一个虚拟 AUV 作为领导者,而期望的指令则是通过每个 AUV 和虚拟领导者之间的相对位置来设计的。控制器是基于反推法设计的,并且使用在线基于数据的学习方案进行不确定性逼近。重点是,与之前主要关注稳定性的学习方法相比,本文使用收集到的在线数据构建学习性能指标。该指标进一步用于神经网络权重的复合更新律中。通过 Lyapunov 方法分析闭环系统稳定性。在固定编队下的五艘 AUV 的仿真测试表明,所提出的方法可以实现更高的跟踪性能和改进的逼近精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验