Suppr超能文献

萝卜(VIR萝卜品种)群体在耐铝性方面的遗传多样性

Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance.

作者信息

Kurina A B, Kosareva I A, Artemyeva A M

机构信息

Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia.

出版信息

Vavilovskii Zhurnal Genet Selektsii. 2020 Oct;24(6):613-624. doi: 10.18699/VJ20.655.

Abstract

Radish and small radish (Raphanus sativus L.) are popular and widely cultivated root vegetables in the world, which occupy an important place in human nutrition. Edaphic stressors have a significant impact on their productivity and quality. The main factor determining the phytotoxicity of acidic soils is the increased concentration of mobile aluminum ions in the soil solution. The accumulation of aluminum in root tissues disrupts the processes of cell division, initiation and growth of the lateral roots, the supply of plants with minerals and water. The study of intraspecific variation in aluminum resistance of R. sativus is an important stage for the breeding of these crops. The purpose of this work was to study the genetic diversity of R. sativus crops including 109 accessions of small radish and radish of various ecological and geographical origin, belonging to 23 types, 14 varieties of European, Chinese and Japanese subspecies on aluminum tolerance. In the absence of a rapid assessment methodology specialized for the species studied, a method is used to assess the aluminum resistance of cereals using an eriochrome cyanine R dye, which is based on the recovery or absence of restoration of mitotic activity of the seedlings roots subjected to shock exposure to aluminum. The effect of various concentrations on the vital activity of plants was revealed: a 66-mM concentration of AlCl · 6НО had a weak toxic effect on R. sativus accessions slowing down root growth; 83 mM contributed to a large differentiation of the small radish accessions and to a lesser extent for radish; 99 mM inhibited further root growth in 13.0 % of small radish accessions and in 7.3 % of radish and had a highly damaging effect. AlCl · 6НО at a concentration of 99 mM allowed us to identify the most tolerant small radish and radish accessions that originate from countries with a wide distribution of acidic soils. In a result, it was possible to determine the intraspecific variability of small radish and radish plants in the early stages of vegetation and to identify genotypes that are contrasting in their resistance to aluminum. We recommend the AlCl · 6НО concentration of 83 mM for screening the aluminum resistance of small radish and 99 mM for radish. The modified method that we developed is proposed as a rapid diagnosis of aluminum tolerance for the screening of a wide range of R. sativus genotypes and a subsequent study of contrasting forms during a longer cultivation of plants in hydroponic culture (including elemental analysis of roots and shoots, contrasting in resistance of accessions) as well as reactions of plants in soil conditions.

摘要

萝卜和小萝卜(Raphanus sativus L.)是世界上广受欢迎且广泛种植的根菜类蔬菜,在人类营养中占据重要地位。土壤胁迫因子对其产量和品质有重大影响。决定酸性土壤植物毒性的主要因素是土壤溶液中可移动铝离子浓度的增加。铝在根组织中的积累会破坏细胞分裂、侧根起始和生长过程,以及植物对矿物质和水分的供应。研究萝卜对铝抗性的种内变异是这些作物育种的重要阶段。这项工作的目的是研究萝卜作物的遗传多样性,包括109份不同生态和地理起源的小萝卜和萝卜种质,分属于23个类型,欧洲、中国和日本亚种的14个变种,考察其对铝的耐受性。由于缺乏专门针对所研究物种的快速评估方法,采用了一种基于使用铬花青R染料来评估谷物铝抗性的方法,该方法基于遭受铝冲击处理的幼苗根系有丝分裂活性的恢复或未恢复情况。揭示了不同浓度对植物生命活动的影响:66 mM浓度的AlCl₃·6H₂O对萝卜种质有较弱的毒性作用,会减缓根系生长;83 mM导致小萝卜种质有较大分化,对萝卜的分化程度较小;99 mM抑制了13.0%的小萝卜种质和7.3%的萝卜的根系进一步生长,且具有高度破坏作用。99 mM浓度的AlCl₃·6H₂O使我们能够鉴定出来自酸性土壤广泛分布国家的最耐铝的小萝卜和萝卜种质。结果,有可能在植被早期确定小萝卜和萝卜植株的种内变异性,并鉴定出对铝抗性具有显著差异的基因型。我们建议用83 mM的AlCl₃·6H₂O浓度筛选小萝卜的铝抗性,用99 mM筛选萝卜的铝抗性。我们开发的改良方法被提议作为一种快速诊断铝耐受性的方法,用于筛选广泛的萝卜基因型,并在水培中对植物进行更长时间培养期间(包括对根系和地上部分的元素分析,种质抗性有差异)以及在土壤条件下研究具有显著差异的类型时,研究植物的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2169/7716579/3a5fe4f7f3f7/VJGB-24-20655-Tab1.jpg

相似文献

1
Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance.
Vavilovskii Zhurnal Genet Selektsii. 2020 Oct;24(6):613-624. doi: 10.18699/VJ20.655.
2
Genetic Diversity of Phenotypic and Biochemical Traits in VIR Radish ( L.) Germplasm Collection.
Plants (Basel). 2021 Aug 29;10(9):1799. doi: 10.3390/plants10091799.
4
Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
J Agric Food Chem. 2016 Jan 13;64(1):61-70. doi: 10.1021/acs.jafc.5b04575. Epub 2015 Dec 29.
5
Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
BMC Plant Biol. 2016 Jan 27;16 Suppl 1(Suppl 1):7. doi: 10.1186/s12870-015-0687-y.
8
Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.).
Front Plant Sci. 2015 May 8;6:293. doi: 10.3389/fpls.2015.00293. eCollection 2015.
9
Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.
Plant Physiol Biochem. 2017 Jan;110:185-193. doi: 10.1016/j.plaphy.2015.12.013. Epub 2015 Dec 25.
10
Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes.
Theor Appl Genet. 2016 Sep;129(9):1797-814. doi: 10.1007/s00122-016-2741-z. Epub 2016 Jul 4.

引用本文的文献

1
Genetic Diversity of Phenotypic and Biochemical Traits in VIR Radish ( L.) Germplasm Collection.
Plants (Basel). 2021 Aug 29;10(9):1799. doi: 10.3390/plants10091799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验