Suppr超能文献

利用热电 puddles:石墨烯中的堆叠顺序和电子屏蔽

Harnessing Thermoelectric Puddles the Stacking Order and Electronic Screening in Graphene.

作者信息

Zhao Mali, Kim Dohyun, Lee Yongjoon, Ling Ning, Zheng Shoujun, Lee Young Hee, Yang Heejun

机构信息

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea.

Institute for Basic Science, Center for Integrated Nanostructure Physics, Suwon 16419, Korea.

出版信息

ACS Nano. 2021 Mar 23;15(3):5397-5404. doi: 10.1021/acsnano.1c00030. Epub 2021 Mar 4.

Abstract

Thermoelectricity has been investigated mostly on the macroscopic scale despite the fact that its origin is linked to the local electronic band structure of materials. While the role of thermopower from microscopic structures (, surfaces or grain boundaries) increases for emerging thermoelectric materials, manipulating thermoelectric puddles, spatially varying levels of thermoelectric power on the nanometer scale, remains unexplored. Here, we illustrate thermoelectric puddles that can be harnessed the stacking order and electronic screening in graphene. The local thermoelectric elements were investigated by gate-tunable scanning thermoelectric microscopy on the atomic scale, revealing the roles of local lattice symmetry, impurity charge scatterings, and mechanical strains in the thermopower system. The long-range screening of electrons at the Dirac point in graphene, which could be reached by spectroscopy, allowed us to unveil distinct thermoelectric puddles in the graphene that are susceptible to the stacking order and external strain. Thus, manipulating thermoelectric puddles a lattice symmetry and electronic engineering will realize practical thermopower systems with low-dimensional materials.

摘要

尽管热电效应的起源与材料的局部电子能带结构相关,但对热电效应的研究大多集中在宏观尺度上。对于新兴的热电材料,微观结构(如表面或晶界)产生的热功率的作用日益增强,然而,对纳米尺度上空间变化的热电功率——即热电“水坑”的操控仍未得到探索。在此,我们展示了可利用石墨烯中的堆叠顺序和电子屏蔽来实现的热电“水坑”。通过在原子尺度上进行栅极可调谐扫描热显微镜研究了局部热电元件,揭示了局部晶格对称性、杂质电荷散射和机械应变在热功率系统中的作用。通过光谱学能够实现的石墨烯狄拉克点处电子的长程屏蔽,使我们得以揭示石墨烯中不同的热电“水坑”,这些“水坑”易受堆叠顺序和外部应变的影响。因此,通过晶格对称性和电子工程来操控热电“水坑”,将实现基于低维材料的实用热功率系统。

相似文献

1
Harnessing Thermoelectric Puddles the Stacking Order and Electronic Screening in Graphene.
ACS Nano. 2021 Mar 23;15(3):5397-5404. doi: 10.1021/acsnano.1c00030. Epub 2021 Mar 4.
2
Atomic-scale thermopower in charge density wave states.
Nat Commun. 2022 Aug 3;13(1):4516. doi: 10.1038/s41467-022-32226-y.
3
Atomic-scale mapping of thermoelectric power on graphene: role of defects and boundaries.
Nano Lett. 2013 Jul 10;13(7):3269-73. doi: 10.1021/nl401473j. Epub 2013 Jun 5.
4
Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials.
Adv Mater. 2023 Jul;35(27):e2106871. doi: 10.1002/adma.202106871. Epub 2022 Feb 10.
5
Coherent Thermoelectric Power from Graphene Quantum Dots.
Nano Lett. 2019 Jan 9;19(1):61-68. doi: 10.1021/acs.nanolett.8b03208. Epub 2018 Dec 26.
6
Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.
Sci Rep. 2016 Feb 8;6:20402. doi: 10.1038/srep20402.
7
Charge Puddles in Graphene near the Dirac Point.
Phys Rev Lett. 2016 Mar 25;116(12):126804. doi: 10.1103/PhysRevLett.116.126804. Epub 2016 Mar 23.
8
Thermoelectric imaging of structural disorder in epitaxial graphene.
Nat Mater. 2013 Oct;12(10):913-8. doi: 10.1038/nmat3708. Epub 2013 Jul 14.
9
Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.
Phys Chem Chem Phys. 2016 Apr 21;18(15):10607-15. doi: 10.1039/c6cp01012a. Epub 2016 Apr 1.
10
Anomalous thermopower oscillations in graphene-nanowire vertical heterostructures.
Nanotechnology. 2021 May 31;32(34). doi: 10.1088/1361-6528/ac0191.

引用本文的文献

1
Atomic-scale thermopower in charge density wave states.
Nat Commun. 2022 Aug 3;13(1):4516. doi: 10.1038/s41467-022-32226-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验