Parvin Sahanaz, Hazra Vishwadeepa, Francis Anita Gemmy, Pati Swapan K, Bhattacharyya Sayan
Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
Inorg Chem. 2021 May 17;60(10):6911-6921. doi: 10.1021/acs.inorgchem.1c00011. Epub 2021 Mar 5.
The role of electrochemical interfaces in energy conversion and storage is unprecedented and more so the interlayers of two-dimensional (2D) heterostructures, where the physicochemical nature of these interlayers can be adjusted by cation intercalation. We demonstrate intercalation of Ni and Co with similar ionic radii of ∼0.07 nm in the interlayer of 1T-WS while electrodepositing NiCo layered double hydroxide (NiCo-LDH) to create a 2D heterostructure. The extent of intercalation varies with the electrodeposition time. Electrodeposition for 90 s results in 22.4-nm-thick heterostructures, and charge transfer ensues from NiCo-LDH to 1T-WS, which stabilizes the higher oxidation states of Ni and Co. Density functional theory calculations validate the intercalation principle where the intercalated Ni and Co d electrons contribute to the density of states at the Fermi level of 1T-WS. Water electrolysis is taken as a representative redox process. The 90 s electrodeposited heterostructure needs the relatively lowest overpotentials of 134 ± 14 and 343 ± 4 mV for hydrogen and oxygen evolution reactions, respectively, to achieve a current density of ±10 mA/cm along with exceptional durability for 60 h in 1 M potassium hydroxide. The electrochemical parameters are found to correlate with enhanced mass diffusion through the cation and Cl-intercalated interlayer spacing of 1T-WS and the number of active sites. While 1T-WS is mostly celebrated as a HER catalyst in an acidic medium, with the help of intercalation chemistry, this work explores an unfound territory of this transition-metal dichalcogenide to catalyze both half-reactions of water electrolysis.
电化学界面在能量转换和存储中所起的作用是前所未有的,二维(2D)异质结构的中间层更是如此,在这些中间层中,其物理化学性质可通过阳离子插层来调节。我们展示了在1T-WS中间层中插入离子半径相似(约0.07 nm)的Ni和Co,同时电沉积NiCo层状双氢氧化物(NiCo-LDH)以形成二维异质结构。插层程度随电沉积时间而变化。电沉积90 s会形成22.4 nm厚的异质结构,电荷从NiCo-LDH转移至1T-WS,这使Ni和Co的较高氧化态得以稳定。密度泛函理论计算验证了插层原理,即插入的Ni和Co的d电子对1T-WS费米能级处的态密度有贡献。以水电解作为一个代表性的氧化还原过程。电沉积90 s得到的异质结构在析氢和析氧反应中分别需要相对最低的过电位,即134±14 mV和343±4 mV,以实现±10 mA/cm²的电流密度,同时在1 M氢氧化钾中具有60 h的出色耐久性。发现电化学参数与通过1T-WS的阳离子和Cl插层中间层间距增强的质量扩散以及活性位点数量相关。虽然1T-WS在酸性介质中主要作为析氢催化剂而闻名,但借助插层化学,这项工作探索了这种过渡金属二硫属化物在催化水电解两个半反应方面尚未被发现的领域。