Suppr超能文献

SICD:基于降维 CSI-MIMO 的新型单接入点室内定位

SICD: Novel Single-Access-Point Indoor Localization Based on CSI-MIMO with Dimensionality Reduction.

机构信息

College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing 210023, China.

出版信息

Sensors (Basel). 2021 Feb 13;21(4):1325. doi: 10.3390/s21041325.

Abstract

With the rise of location-based services and the rapidly growing requirements related to their applications, indoor localization based on channel state information-multiple-input multiple-output (CSI-MIMO) has become an important research topic. However, indoor localization based on CSI-MIMO has some disadvantages, including noise and high data dimensions. To overcome the above drawbacks, we proposed a novel method of indoor localization based on CSI-MIMO, named SICD. For SICD, a novel localization fingerprint was first designed which can reflect the time-frequency and space-frequency characteristics of CSI-MIMO under a single access point (AP). To reduce the redundancy in the data of CSI-MIMO amplitude, we developed a data dimensionality reduction algorithm. Moreover, by leveraging a log-normal distribution, we calculated the conditional probability of the naive Bayes classifier, which was used to predict the moving object's location. Compared with other state-of-the-art methods, the results of the experiment confirm that the SICD effectively improves localization accuracy.

摘要

随着基于位置的服务的兴起和与之相关的应用需求的快速增长,基于信道状态信息-多输入多输出(CSI-MIMO)的室内定位已成为一个重要的研究课题。然而,基于 CSI-MIMO 的室内定位存在一些缺点,包括噪声和高数据维度。为了克服上述缺点,我们提出了一种基于 CSI-MIMO 的新型室内定位方法,名为 SICD。对于 SICD,首先设计了一种新的定位指纹,它可以反映单个接入点(AP)下 CSI-MIMO 的时频和空频特性。为了减少 CSI-MIMO 幅度数据的冗余,我们开发了一种数据降维算法。此外,我们利用对数正态分布计算了朴素贝叶斯分类器的条件概率,用于预测移动目标的位置。与其他最先进的方法相比,实验结果证实,SICD 有效地提高了定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7cb/7918435/e9d67908752c/sensors-21-01325-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验