Molina-Viedma Ángel, López-Alba Elías, Felipe-Sesé Luis, Díaz Francisco
Departamento de Ingeniería Mecánica y Minera, Campus Científico Tecnológico de Linares, Universidad de Jaén, 23700 Linares, Spain.
Departamento de Ingeniería Mecánica y Minera, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain.
Sensors (Basel). 2021 Feb 25;21(5):1602. doi: 10.3390/s21051602.
Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.
飞机蒙皮组件的实验表征与验证需要进行多项评估(结构、空气动力学、声学等),且成本高昂。进行必要的测试需要不同的试验台和设备。其中两项主要的动态特性包括冲击载荷下的能量吸收以及通过任何宽带激励(包括冲击)下的振动响应来识别模态参数。本文利用了加筋飞机复合材料面板在多次冲击激励下的响应,旨在进行冲击和能量吸收分析。基于复合材料的高刚度,本研究假设在小应变情况下,对多次冲击激励的整体响应是线性的,忽略了局部损伤产生的非线性行为。然后,可以进行模态识别。通过高速三维数字图像相关技术测量冲击后的振动,并将其用于全场运行模态分析。利用全场非侵入性技术的优势,在宽频谱范围内对多个模态进行了表征。这些结果描述了面板一致的模态行为,同时给出了由自模态保证准则(Auto-MAC)给出的良好模态分离指标。因此,它说明了在单次测试中进行这些动态表征的可能性,在验证这些结构时提供了额外信息,同时减少了时间和投资。