Suppr超能文献

癌症治疗多学科团队会议中的医学和非医学信息。

Medical and Nonmedical Information during Multidisciplinary Team Meetings in Cancer Care.

机构信息

Department of Clinical Sciences Lund, Division of Oncology, Lund University, 22381 Lund, Sweden.

Regional Cancer Centre South, Region Skåne, 22381 Lund, Sweden.

出版信息

Curr Oncol. 2021 Feb 23;28(1):1008-1016. doi: 10.3390/curroncol28010098.

Abstract

BACKGROUND

Multidisciplinary team (MDT) meetings provide treatment recommendations based on available information and collective decision-making in teams with complementary professions, disciplines and skills. We aimed to map ancillary medical and nonmedical patient information during case presentations and case discussions in MDT meetings in cancer care.

METHODS

Through a nonparticipant, observational approach, we mapped verbal information on medical, nonmedical and patient-related characteristics and classified these based on content. Data were collected from 336 case discussions in three MDTs for neuro-oncology, sarcoma and hepato-biliary cancer.

RESULTS

Information on physical status was presented in 48.2% of the case discussions, psychological status in 8.9% and comorbidity in 48.5% of the cases. Nonmedical factors, such as family relations, occupation, country of origin and abode were referred to in 3.6-7.7% of the cases, and patient preferences were reported in 4.2%.

CONCLUSIONS

Provision of information on comorbidities in half of the cases and on patient characteristics and treatment preferences in <10% of case discussions suggest a need to define data elements and develop reporting standards to support robust MDT decision-making.

摘要

背景

多学科团队(MDT)会议根据团队中具有互补专业、学科和技能的成员提供的可用信息和集体决策,为治疗提供建议。我们旨在绘制癌症治疗中 MDT 会议中病例介绍和病例讨论过程中辅助医疗和非医疗患者信息。

方法

通过非参与式观察方法,我们对病例讨论中关于医疗、非医疗和患者相关特征的口头信息进行了映射,并根据内容对其进行了分类。数据来自三个神经肿瘤学、肉瘤和肝胆癌 MDT 的 336 次病例讨论。

结果

在 48.2%的病例讨论中呈现了身体状况的信息,在 8.9%的病例中呈现了心理状况的信息,在 48.5%的病例中呈现了合并症的信息。在 3.6-7.7%的病例中提到了非医疗因素,如家庭关系、职业、原籍国和居住地,在 4.2%的病例中报告了患者偏好。

结论

半数病例提供了合并症信息,<10%的病例讨论提供了患者特征和治疗偏好信息,这表明需要定义数据元素并制定报告标准,以支持强大的 MDT 决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e147/7985788/fb2273578835/curroncol-28-00098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验