Meisak Darya, Macutkevic Jan, Selskis Algirdas, Kuzhir Polina, Banys Juras
Physics Faculty, Vilnius University, Sauletekio Avenue 3, LT-10222 Vilnius, Lithuania.
Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Street 11, 220006 Minsk, Belarus.
Nanomaterials (Basel). 2021 Feb 23;11(2):555. doi: 10.3390/nano11020555.
The dielectric/electric properties of the Ni@C (carbon-coated Ni)/epoxy composites and Ni@C/MWCNTs (multi-walled carbon nanotubes)/epoxy composites loaded with fixed MWCNTs amount just below the percolation threshold (0.09 vol.%) and Ni@C at different concentrations up to 1 vol.% were investigated in broad frequency (20 Hz-40 GHz) and temperature (30 K-500 K) regions. In composites with the only Ni@C nanoparticles, the electrical percolation threshold was determined between 10 and 15 vol.%. Above the percolation threshold the dielectric permittivity (ε') and the electrical conductivity (σ) of the composites loaded with Ni@C only are high enough, i.e., ε' = 10 and σ = 0.6 S/m at 100 Hz for composites with 30 vol.% Ni@C, to be used for electromagnetic shielding applications. The annealing to 500 K was proved to be an effective and simple tool to decrease the percolation threshold in epoxy/Ni@C composites. For hybrid composites series an optimal concentration of Ni@C (0.2 vol.%) was determined, leading to the conductivity absolute values several orders of magnitude higher than that of a composite filled with MWCNTs only. The synergy effects of using both fillers have been discussed. Below room temperature the electrical transport is mainly governed by epoxy resin compression in all composites, while the electron tunnelling was observed only in hybrid composites below 200 K. At higher temperatures (above 400 K), in addition to the nanoparticles redistribution effects, the electrical conductivity of epoxy resin makes a significant contribution to the total composite conductivity. The dielectric relaxation spectroscopy allows estimating the nanoparticles distributions in polymer matrix and could be used as the non-destructive and fast alternate to microscopy techniques for general polymer composite fabrication control.
研究了负载量刚好低于渗流阈值(0.09体积%)的固定多壁碳纳米管(MWCNTs)以及不同浓度(最高达1体积%)的Ni@C(碳包覆镍)/环氧树脂复合材料和Ni@C/MWCNTs/环氧树脂复合材料在宽频率(20Hz - 40GHz)和温度(30K - 500K)范围内的介电/电学性能。在仅含有Ni@C纳米颗粒的复合材料中,确定其电渗流阈值在10%至15体积%之间。在渗流阈值以上,仅负载Ni@C的复合材料的介电常数(ε')和电导率(σ)足够高,例如,对于含有30体积%Ni@C的复合材料,在100Hz时ε' = 10且σ = 0.6S/m,可用于电磁屏蔽应用。事实证明,在500K下退火是降低环氧/Ni@C复合材料渗流阈值的一种有效且简便的方法。对于混合复合材料系列,确定了Ni@C的最佳浓度(0.2体积%),其电导率绝对值比仅填充MWCNTs的复合材料高出几个数量级。讨论了使用两种填料的协同效应。在室温以下,所有复合材料中的电输运主要由环氧树脂压缩控制,而仅在低于200K的混合复合材料中观察到电子隧穿。在较高温度(高于400K)下,除了纳米颗粒重新分布效应外,环氧树脂的电导率对复合材料的总电导率有显著贡献。介电弛豫光谱法可以估计纳米颗粒在聚合物基体中的分布,并且可以用作一般聚合物复合材料制造控制中显微镜技术的无损且快速的替代方法。