Hamburg Epilepsy Center, Protestant Hospital Alsterdorf, Department of Neurology and Epileptology, Hamburg, Germany.
Elbe Klinikum Stade, Department of Neurology, Stade, Germany.
Epilepsy Res. 2021 May;172:106594. doi: 10.1016/j.eplepsyres.2021.106594. Epub 2021 Feb 25.
Focal cortical dysplasias (FCDs) represent one of the most frequent causes of pharmaco-resistant focal epilepsies. Despite improved clinical imaging methods over the past years, FCD detection remains challenging, as FCDs vary in location, size, and shape and commonly blend into surrounding tissues without clear definable boundaries. We developed a novel convolutional neural network for FCD detection and segmentation and validated it prospectively on daily-routine MRIs.
The neural network was trained on 201 T1 and FLAIR 3 T MRI volume sequences of 158 patients with mainly FCDs, regardless of type, and 7 focal PMG. Non-FCD/PMG MRIs, drawn from 100 normal MRIs and 50 MRIs with non-FCD/PMG pathologies, were added to the training. We applied the algorithm prospectively on 100 consecutive MRIs of patients with focal epilepsy from daily clinical practice. The results were compared with corresponding neuroradiological reports and morphometric MRI analyses evaluated by an experienced epileptologist.
Best training results reached a sensitivity (recall) of 70.1 % and a precision of 54.3 % for detecting FCDs. Applied on the daily-routine MRIs, 7 out of 9 FCDs were detected and segmented correctly with a sensitivity of 77.8 % and a specificity of 5.5 %. The results of conventional visual analyses were 33.3 % and 94.5 %, respectively (3/9 FCDs detected); the results of morphometric analyses with overall epileptologic evaluation were both 100 % (9/9 FCDs detected) and thus served as reference.
We developed a 3D convolutional neural network with autoencoder regularization for FCD detection and segmentation. Our algorithm employs the largest FCD training dataset to date with various types of FCDs and some focal PMG. It provided a higher sensitivity in detecting FCDs than conventional visual analyses. Despite its low specificity, the number of false positively predicted lesions per MRI was lower than with morphometric analysis. We consider our algorithm already useful for FCD pre-screening in everyday clinical practice.
局灶性皮质发育不良(FCD)是药物难治性局灶性癫痫最常见的原因之一。尽管近年来临床成像方法有所改进,但 FCD 的检测仍然具有挑战性,因为 FCD 的位置、大小和形状各不相同,并且通常与周围组织混合,没有明确的可定义边界。我们开发了一种用于 FCD 检测和分割的新型卷积神经网络,并在日常例行 MRI 上进行了前瞻性验证。
该神经网络在 158 名主要为 FCD 且不分类型的患者的 201 个 T1 和 FLAIR 3T MRI 容积序列以及 7 个局灶性 PMG 上进行了训练。来自 100 个正常 MRI 和 50 个具有非 FCD/PMG 病变的 MRI 的非 FCD/PMG MRI 被添加到训练中。我们将该算法前瞻性地应用于日常临床实践中 100 例局灶性癫痫患者的连续 MRI。结果与相应的神经放射学报告和由经验丰富的癫痫专家评估的形态测量 MRI 分析进行了比较。
最佳训练结果达到了 70.1%的灵敏度(召回率)和 54.3%的 FCD 检测精度。应用于日常例行 MRI 时,9 个 FCD 中有 7 个被正确检测和分割,灵敏度为 77.8%,特异性为 5.5%。传统视觉分析的结果分别为 33.3%和 94.5%(9 个 FCD 中有 3 个被检测到);形态测量分析的结果与总体癫痫学评估均为 100%(9 个 FCD 均被检测到),因此作为参考。
我们开发了一种具有自动编码器正则化的 3D 卷积神经网络,用于 FCD 检测和分割。我们的算法使用了迄今为止最大的 FCD 训练数据集,包含各种类型的 FCD 和一些局灶性 PMG。与传统的视觉分析相比,它在检测 FCD 方面具有更高的灵敏度。尽管特异性较低,但每个 MRI 预测的假阳性病变数量低于形态测量分析。我们认为该算法在日常临床实践中对 FCD 的预筛查已经很有用。