Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland.
Nucleic Acids Res. 2021 Jun 21;49(11):e63. doi: 10.1093/nar/gkab135.
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.
U1 小核核糖核蛋白(U1 snRNP)在 RNA 处理过程中起着核心作用。先前的 U1 snRNP 结构揭示了核糖核蛋白如何组织并识别外显子-内含子交界处的前体 mRNA 底物。与许多其他参与 RNA 代谢的核糖核蛋白一样,U1 snRNP 包含由低复杂度序列组成的延伸部分。在这里,我们开发了一种使用大多数全长组件在体外重新组装 U1 snRNP 的方案,以便进行液相 NMR 光谱学研究。通过小角 X 射线散射(SANS)和 cryo-EM 探测颗粒的形状和结构来验证重组的准确性。我们使用基于 NMR 光谱学的方法首次探测到 U1 snRNP 尾部的原子细节,我们的结果证实了它们的高度灵活性。我们还监测了剪接因子 PTBP1 与 U1 snRNP 之间不稳定的相互作用,并验证了 U1 snRNA 茎环 4 是核糖核蛋白上剪接调节剂的结合位点。总之,我们开发了一种探测 U1 snRNP 内无序区域并绘制控制剪接调节的相互作用的方法。该方法可用于深入了解可变剪接的分子机制,并筛选潜在的 RNA 治疗药物。