Dunning Thom H, Xu Lu T, Cooper David L, Karadakov Peter B
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States.
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, U.K.
J Phys Chem A. 2021 Mar 18;125(10):2021-2050. doi: 10.1021/acs.jpca.0c10472. Epub 2021 Mar 6.
Spin-Coupled Generalized Valence Bond (SCGVB) theory provides the foundation for a comprehensive theory of the electronic structure of molecules. SCGVB theory offers a compelling orbital description of the electronic structure of molecules as well as an efficient and effective zero-order wave function for calculations striving for quantitative predictions of molecular structures, energetics, and other properties. The orbitals in the SCGVB wave function are usually semilocalized, and for most molecules, they can be interpreted using concepts familiar to all chemists (hybrid orbitals, localized bond pairs, lone pairs, etc.). SCGVB theory also provides new perspectives on the nature of the bonds in molecules such as C, Be and SF/SF. SCGVB theory contributes unparalleled insights into the underlying cause of the first-row anomaly in inorganic chemistry as well as the electronic structure of organic molecules and the electronic mechanisms of organic reactions. The SCGVB wave function accounts for nondynamical correlation effects and, thus, corrects the most serious deficiency in molecular orbital (RHF) wave functions. Dynamical correlation effects, which are critical for quantitative predictions, can be taken into account using the SCGVB wave function as the zero-order wave function for multireference configuration interaction or coupled cluster calculations.
自旋耦合广义价键(SCGVB)理论为分子电子结构的综合理论奠定了基础。SCGVB理论提供了一种令人信服的分子电子结构轨道描述,以及一种高效且有效的零阶波函数,用于力求对分子结构、能量学和其他性质进行定量预测的计算。SCGVB波函数中的轨道通常是半定域的,对于大多数分子而言,可以使用所有化学家都熟悉的概念(杂化轨道、定域键对、孤对电子等)来解释。SCGVB理论还为诸如C、Be和SF/SF等分子中键的本质提供了新的视角。SCGVB理论为无机化学中第一行元素异常的根本原因、有机分子的电子结构以及有机反应的电子机制提供了无与伦比的见解。SCGVB波函数考虑了非动态相关效应,因此纠正了分子轨道(RHF)波函数中最严重的缺陷。对于定量预测至关重要的动态相关效应,可以将SCGVB波函数用作多参考组态相互作用或耦合簇计算的零阶波函数来加以考虑。