Wörtwein Torsten, Morency Louis-Philippe
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA.
Proc Int Conf Autom Face Gesture Recognit. 2020 Nov;2020:452-456. doi: 10.1109/fg47880.2020.00045. Epub 2021 Jan 18.
Knowing how much to trust a prediction is important for many critical applications. We describe two simple approaches to estimate uncertainty in regression prediction tasks and compare their performance and complexity against popular approaches. We operationalize uncertainty in regression as the absolute error between a model's prediction and the ground truth. Our two proposed approaches use a secondary model to predict the uncertainty of a primary predictive model. Our first approach leverages the assumption that similar observations are likely to have similar uncertainty and predicts uncertainty with a non-parametric method. Our second approach trains a secondary model to directly predict the uncertainty of the primary predictive model. Both approaches outperform other established uncertainty estimation approaches on the MNIST, DISFA, and BP4D+ datasets. Furthermore, we observe that approaches that directly predict the uncertainty generally perform better than approaches that indirectly estimate uncertainty.
了解预测的可信赖程度对于许多关键应用而言至关重要。我们描述了两种简单的方法来估计回归预测任务中的不确定性,并将它们的性能和复杂度与流行方法进行比较。我们将回归中的不确定性定义为模型预测与真实值之间的绝对误差。我们提出的两种方法使用辅助模型来预测主预测模型的不确定性。我们的第一种方法利用了相似观测值可能具有相似不确定性的假设,并使用非参数方法预测不确定性。我们的第二种方法训练一个辅助模型来直接预测主预测模型的不确定性。在MNIST、DISFA和BP4D+数据集上,这两种方法均优于其他已有的不确定性估计方法。此外,我们观察到直接预测不确定性的方法通常比间接估计不确定性的方法表现更好。