Suppr超能文献

用于估计I期临床试验中最大耐受剂量的贝叶斯优化方法。

Bayesian optimization for estimating the maximum tolerated dose in Phase I clinical trials.

作者信息

Takahashi Ami, Suzuki Taiji

机构信息

Department of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan.

Biometrics and Data Management, Clinical Statistics, Pfizer R&D Japan, Tokyo, Japan.

出版信息

Contemp Clin Trials Commun. 2021 Feb 15;21:100753. doi: 10.1016/j.conctc.2021.100753. eCollection 2021 Mar.

Abstract

We introduce a Bayesian optimization method for estimating the maximum tolerated dose in this article. A number of parametric model-based methods have been proposed to estimate the maximum tolerated dose; however, parametric model-based methods need an assumption that dose-toxicity relationships follow specific theoretical models. This assumption potentially leads to suboptimal dose selections if the dose-toxicity curve is misspecified. Our proposed method is based on a Bayesian optimization framework for finding a global optimizer of unknown functions that are expensive to evaluate while using very few function evaluations. It models dose-toxicity relationships with a nonparametric model; therefore, a more flexible estimation can be realized compared with existing parametric model-based methods. Also, most existing methods rely on point estimates of dose-toxicity curves in their dose selections. In contrast, our proposed method exploits a probabilistic model for an unknown function to determine the next dose candidate without ignoring the uncertainty of posterior while imposing some dose-escalation limitations. We investigate the operating characteristics of our proposed method by comparing them with those of the Bayesian-based continual reassessment method and two different nonparametric methods. Simulation results suggest that our proposed method works successfully in terms of selections of the maximum tolerated dose correctly and safe dose allocations.

摘要

在本文中,我们介绍一种用于估计最大耐受剂量的贝叶斯优化方法。已经提出了许多基于参数模型的方法来估计最大耐受剂量;然而,基于参数模型的方法需要一个假设,即剂量-毒性关系遵循特定的理论模型。如果剂量-毒性曲线指定错误,这个假设可能会导致次优的剂量选择。我们提出的方法基于一个贝叶斯优化框架,用于找到未知函数的全局优化器,这些函数评估成本高昂,同时仅使用极少的函数评估。它使用非参数模型对剂量-毒性关系进行建模;因此,与现有的基于参数模型的方法相比,可以实现更灵活的估计。此外,大多数现有方法在剂量选择时依赖于剂量-毒性曲线的点估计。相比之下,我们提出的方法利用未知函数的概率模型来确定下一个剂量候选,在施加一些剂量递增限制的同时不忽略后验的不确定性。我们通过将我们提出的方法与基于贝叶斯的连续重新评估方法以及两种不同的非参数方法进行比较,来研究其操作特性。模拟结果表明,我们提出的方法在正确选择最大耐受剂量和安全剂量分配方面成功有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d14/7910500/fc55008baf8f/gr1.jpg

相似文献

1
Bayesian optimization for estimating the maximum tolerated dose in Phase I clinical trials.
Contemp Clin Trials Commun. 2021 Feb 15;21:100753. doi: 10.1016/j.conctc.2021.100753. eCollection 2021 Mar.
3
A nonparametric Bayesian continual reassessment method in single-agent dose-finding studies.
BMC Med Res Methodol. 2018 Dec 18;18(1):172. doi: 10.1186/s12874-018-0604-9.
4
A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation.
Clin Trials. 2020 Oct;17(5):522-534. doi: 10.1177/1740774520932130. Epub 2020 Jul 7.
6
Shift models for dose-finding in partially ordered groups.
Clin Trials. 2019 Feb;16(1):32-40. doi: 10.1177/1740774518801599. Epub 2018 Oct 11.
8
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Clin Trials. 2018 Aug;15(4):386-397. doi: 10.1177/1740774518772309. Epub 2018 May 19.
9
Dose Finding for Drug Combination in Early Cancer Phase I Trials using Conditional Continual Reassessment Method.
J Biom Biostat. 2017;8(6). doi: 10.4172/2155-6180.1000381. Epub 2017 Nov 27.
10
A Bayesian adaptive design for cancer phase I trials using a flexible range of doses.
J Biopharm Stat. 2018;28(3):562-574. doi: 10.1080/10543406.2017.1372774. Epub 2017 Oct 6.

引用本文的文献

1
N-of-1 medicine.
Singapore Med J. 2024 Mar 1;65(3):167-175. doi: 10.4103/singaporemedj.SMJ-2023-243. Epub 2024 Mar 26.

本文引用的文献

1
Evaluating the effects of design parameters on the performances of phase I trial designs.
Contemp Clin Trials Commun. 2019 May 17;15:100379. doi: 10.1016/j.conctc.2019.100379. eCollection 2019 Sep.
2
A nonparametric Bayesian continual reassessment method in single-agent dose-finding studies.
BMC Med Res Methodol. 2018 Dec 18;18(1):172. doi: 10.1186/s12874-018-0604-9.
3
Systematic comparison of the statistical operating characteristics of various Phase I oncology designs.
Contemp Clin Trials Commun. 2016 Nov 24;5:34-48. doi: 10.1016/j.conctc.2016.11.006. eCollection 2017 Mar.
4
Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
Clin Cancer Res. 2018 Sep 15;24(18):4357-4364. doi: 10.1158/1078-0432.CCR-18-0168. Epub 2018 Apr 16.
5
Embracing model-based designs for dose-finding trials.
Br J Cancer. 2017 Jul 25;117(3):332-339. doi: 10.1038/bjc.2017.186. Epub 2017 Jun 29.
6
A Bayesian interval dose-finding design addressingOckham's razor: mTPI-2.
Contemp Clin Trials. 2017 Jul;58:23-33. doi: 10.1016/j.cct.2017.04.006. Epub 2017 Apr 27.
8
Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
Stat Med. 2017 Jan 30;36(2):291-300. doi: 10.1002/sim.7043. Epub 2016 Jul 19.
9
A statistical evaluation of dose expansion cohorts in phase I clinical trials.
J Natl Cancer Inst. 2015 Feb 20;107(3). doi: 10.1093/jnci/dju429. Print 2015 Mar.
10
Adaptive dose-finding studies: a review of model-guided phase I clinical trials.
J Clin Oncol. 2014 Aug 10;32(23):2505-11. doi: 10.1200/JCO.2013.54.6051. Epub 2014 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验