Suppr超能文献

真空中的离子液体蒸汽:通过密度泛函理论和紫外光电子能谱推导阳极稳定性的可能性

Ionic Liquid Vapors in Vacuum: Possibility to Derive Anodic Stabilities from DFT and UPS.

作者信息

Kuusik Ivar, Kook Mati, Pärna Rainer, Kisand Vambola

机构信息

Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia.

出版信息

ACS Omega. 2021 Feb 15;6(8):5255-5265. doi: 10.1021/acsomega.0c05369. eCollection 2021 Mar 2.

Abstract

Ultraviolet photoelectron spectroscopy (UPS) investigations of several gas-phase ionic liquid (IL) ion pairs have been conducted. [EMIM][OTF], [PYR][OTF], [EMIM][DCA], [PYR][DCA], [PYR][TCM], [PYR][FSI], [PYR][PF], [S][TFSI], [P][TFSI], and [EMMIM][TFSI] vapor UPS spectra are presented for the first time. The experimental low-binding-energy cutoff value (highest occupied molecular orbital, HOMO energy) of the ionic liquid ion pairs, which is of great interest, has been measured. Many studies use calculated gas-phase electronic properties to estimate the liquid-phase electrochemical stability. Hybrid density functional theory (DFT) calculations have been used to interpret the experimental data. The gas-phase photoelectron spectra in conjunction with the theoretical calculations are able to verify most HOMO energies and assign them to the cation or anion. The hybrid M06 functional is shown to offer a very good description of the ionic liquid electronic structure. In some cases, the excellent agreement between the UPS spectra and the M06 calculation validates the conformer found and constitutes as a first indirect experimental determination of ionic liquid ion-pair structure. Comparisons with recent theoretical studies are made, and implications for electrochemical applications are discussed. The new data provide a much-needed reference for future ab initio calculations and support the argument that modeling of IL cations and anions separately is incorrect.

摘要

已对几种气相离子液体(IL)离子对进行了紫外光电子能谱(UPS)研究。首次展示了[EMIM][OTF]、[PYR][OTF]、[EMIM][DCA]、[PYR][DCA]、[PYR][TCM]、[PYR][FSI]、[PYR][PF]、[S][TFSI]、[P][TFSI]和[EMMIM][TFSI]蒸汽的UPS光谱。测量了备受关注的离子液体离子对的实验低结合能截止值(最高占据分子轨道,HOMO能量)。许多研究使用计算出的气相电子性质来估计液相电化学稳定性。已使用杂化密度泛函理论(DFT)计算来解释实验数据。气相光电子能谱与理论计算相结合能够验证大多数HOMO能量并将其归属于阳离子或阴离子。结果表明,杂化M06泛函能很好地描述离子液体的电子结构。在某些情况下,UPS光谱与M06计算之间的极佳一致性验证了所发现的构象异构体,并构成了对离子液体离子对结构的首次间接实验测定。与近期理论研究进行了比较,并讨论了其对电化学应用的影响。这些新数据为未来的从头算计算提供了急需的参考,并支持了单独对离子液体阳离子和阴离子进行建模是不正确的这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/7931180/34a05ce9b622/ao0c05369_0002.jpg

相似文献

1
Ionic Liquid Vapors in Vacuum: Possibility to Derive Anodic Stabilities from DFT and UPS.
ACS Omega. 2021 Feb 15;6(8):5255-5265. doi: 10.1021/acsomega.0c05369. eCollection 2021 Mar 2.
2
Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
J Phys Chem B. 2015 Nov 19;119(46):14705-19. doi: 10.1021/acs.jpcb.5b06951. Epub 2015 Nov 9.
3
Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4].
J Phys Chem B. 2014 Sep 25;118(38):11295-309. doi: 10.1021/jp5061705. Epub 2014 Sep 15.
4
Valence electronic structure of [EMIM][BF] ionic liquid: photoemission and DFT+D study.
RSC Adv. 2018 Aug 28;8(53):30298-30304. doi: 10.1039/c8ra05865b. eCollection 2018 Aug 24.
5
Computational insights into the molecular interaction and ion-pair structures of a novel zinc-functionalized ionic liquid, [Emim][Zn(TFSI)₃].
Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 15;153:6-15. doi: 10.1016/j.saa.2015.07.102. Epub 2015 Aug 8.
6
Valence electronic structure of [EMIM][B(CN)]: ion-pair bulk description.
RSC Adv. 2019 Oct 16;9(57):33140-33146. doi: 10.1039/c9ra06762k. eCollection 2019 Oct 15.
7
Inter- and Intramolecular Interactions in Ether-Functionalized Ionic Liquids.
J Phys Chem B. 2021 Mar 11;125(9):2380-2388. doi: 10.1021/acs.jpcb.0c11429. Epub 2021 Feb 24.
8
Ab Initio Force Fields for Organic Anions: Properties of [BMIM][TFSI], [BMIM][FSI], and [BMIM][OTf] Ionic Liquids.
J Phys Chem B. 2018 Apr 12;122(14):4101-4114. doi: 10.1021/acs.jpcb.8b01221. Epub 2018 Mar 23.
10
Interface Structure in Li-Metal/[Pyr][TFSI]-Ionic Liquid System from ab Initio Molecular Dynamics Simulations.
J Phys Chem Lett. 2019 Aug 15;10(16):4577-4586. doi: 10.1021/acs.jpclett.9b01515. Epub 2019 Jul 31.

引用本文的文献

1
Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries.
Nat Commun. 2023 May 15;14(1):2789. doi: 10.1038/s41467-023-38493-7.

本文引用的文献

1
Valence electronic structure of [EMIM][BF] ionic liquid: photoemission and DFT+D study.
RSC Adv. 2018 Aug 28;8(53):30298-30304. doi: 10.1039/c8ra05865b. eCollection 2018 Aug 24.
2
Valence electronic structure of [EMIM][B(CN)]: ion-pair bulk description.
RSC Adv. 2019 Oct 16;9(57):33140-33146. doi: 10.1039/c9ra06762k. eCollection 2019 Oct 15.
4
Experimental validation of calculated atomic charges in ionic liquids.
J Chem Phys. 2018 May 21;148(19):193817. doi: 10.1063/1.5011662.
5
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids.
Front Chem. 2018 Mar 15;6:59. doi: 10.3389/fchem.2018.00059. eCollection 2018.
6
Thermal, electrochemical and radiolytic stabilities of ionic liquids.
Phys Chem Chem Phys. 2018 Mar 28;20(13):8382-8402. doi: 10.1039/c7cp07483b.
7
The role of errors related to DFT methods in calculations involving ion pairs of ionic liquids.
J Comput Chem. 2017 Mar 30;38(8):530-540. doi: 10.1002/jcc.24707.
8
Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries.
J Phys Chem B. 2016 Jun 30;120(25):5691-702. doi: 10.1021/acs.jpcb.6b03433. Epub 2016 Jun 21.
9
Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.
ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3396-406. doi: 10.1021/acsami.5b11353. Epub 2016 Jan 27.
10
Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
J Phys Chem B. 2015 Nov 19;119(46):14705-19. doi: 10.1021/acs.jpcb.5b06951. Epub 2015 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验