Morleo Manuela, Franco Brunella
Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy.
Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Via S Pansini 5, 80131, Naples, Italy.
Cell Stress. 2021 Feb 17;5(3):33-36. doi: 10.15698/cst2021.03.244.
The autophagy-lysosomal pathway is one of the main degradative routes which cells use to balance sources of energy. A number of proteins orchestrate the formation of autophagosomes, membranous organelles instrumental in autophagy. Selective autophagy, involving the recognition and removal of specific targets, is mediated by autophagy receptors, which recognize cargos and the autophagosomal membrane protein LC3 for lysosomal degradation. Recently, bidirectional crosstalk has emerged between autophagy and primary cilia, microtubule-based sensory organelles extending from cells and anchored by the basal body, derived from the mother centriole of the centrosome. The molecular mechanisms underlying the direct role of autophagic proteins in cilia biology and, conversely, the impact of this organelle in autophagy remains elusive. Recently, we uncovered the molecular mechanism by which the centrosomal/basal body protein OFD1 controls the LC3-mediated autophagic cascade. In particular, we demonstrated that OFD1 acts as a selective autophagy receptor by regulating the turnover of unc-51-like kinase (ULK1) complex, which plays a crucial role in the initiation steps of autophagosome biogenesis. Moreover, we showed that patients with a genetic condition caused by mutations in and associated with cilia dysfunction, display excessive autophagy and we demonstrated that autophagy inhibition significantly ameliorates the renal cystic phenotype in a conditional mouse model recapitulating the features of the disease (Morleo et al. 2020, EMBO J, doi: 10.15252/embj.2020105120). We speculate that abnormal autophagy may underlie some of the clinical manifestations observed in the disorders ascribed to cilia dysfunction.
自噬-溶酶体途径是细胞用于平衡能量来源的主要降解途径之一。许多蛋白质共同协调自噬体的形成,自噬体是自噬过程中起重要作用的膜性细胞器。选择性自噬涉及特定靶标的识别和清除,由自噬受体介导,自噬受体识别货物和自噬体膜蛋白LC3以便进行溶酶体降解。最近,自噬与初级纤毛之间出现了双向串扰,初级纤毛是从细胞伸出并由源自中心体母中心粒的基体锚定的基于微管的感觉细胞器。自噬蛋白在纤毛生物学中的直接作用以及相反地,该细胞器在自噬中的影响的分子机制仍然难以捉摸。最近,我们发现了中心体/基体蛋白OFD1控制LC3介导的自噬级联反应的分子机制。特别是,我们证明OFD1通过调节unc-51样激酶(ULK1)复合物的周转而作为选择性自噬受体,ULK1复合物在自噬体生物发生的起始步骤中起关键作用。此外,我们表明,由与纤毛功能障碍相关的突变引起的遗传病患者表现出过度自噬,并且我们证明在重现该疾病特征的条件性小鼠模型中,自噬抑制可显著改善肾囊肿表型(Morleo等人,2020年,《欧洲分子生物学组织杂志》,doi:10.15252/embj.2020105120)。我们推测异常自噬可能是归因于纤毛功能障碍的疾病中观察到的一些临床表现的基础。
Autophagy. 2013-12-12
Mol Cell Oncol. 2021-3-31
Am J Med Genet C Semin Med Genet. 2009-11-15
Genes (Basel). 2023-1-27
Am J Med Genet C Semin Med Genet. 2022-3