Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia; University of Opole, Opole, Poland.
National Taiwan University of Science and Technology, Chemical Engineering Department, Taipei, Taiwan.
Colloids Surf B Biointerfaces. 2021 Jun;202:111657. doi: 10.1016/j.colsurfb.2021.111657. Epub 2021 Feb 25.
The addition of denaturants strongly influences the surface properties of aqueous myoglobin solutions. The effect differs from the results for mixed solutions of the denaturants and other globular proteins, for example, bovine serum albumin (BSA), lysozyme and β-lactoglobulin (BLG), although the surface properties of the solutions of the pure proteins are similar. The kinetic dependencies of the dynamic surface elasticity of myoglobin solutions with guanidine hydrochloride (GuHCl) reveal at least two adsorption steps at denaturant concentrations higher than 1 M: a very fast increase of the dynamic surface elasticity to approximately 30 mN/m at the beginning of adsorption, and a slower growth to abnormally high values of 250-300 mN/m. At the same time, the surface elasticity of BSA/GuHCl, BLG/GuHCl and lysozyme/GuHCl solutions is a non-monotonic function of the surface age, and does not exceed 50 mN/m close to equilibrium. The high surface elasticity of myoglobin/GuHCl solutions may be associated with protein aggregation in the surface layer. The formation of aggregates is confirmed by ellipsometry and Brewster angle microscopy. The addition of ionic surfactants to protein solutions leads to the formation of myoglobin/surfactant complexes, and the kinetic dependencies of the dynamic surface elasticity display local maxima indicating multistep adsorption kinetics, unlike the corresponding results for solutions of other globular proteins mixed with ionic surfactants. Ellipsometry and infrared reflection-absorption spectroscopy allow tracing the adsorption of the complexes and their displacement from the interface at high surfactant concentrations.
变性剂的加入强烈影响水合肌红蛋白溶液的表面性质。尽管纯蛋白溶液的表面性质相似,但该影响与变性剂和其他球状蛋白(例如牛血清白蛋白(BSA)、溶菌酶和β-乳球蛋白(BLG))的混合溶液的结果不同。肌红蛋白与盐酸胍(GuHCl)溶液的动态表面弹性的动力学依赖性在变性剂浓度高于 1 M 时揭示了至少两个吸附步骤:在吸附开始时,动态表面弹性非常快地增加到约 30 mN/m,然后缓慢增长到异常高的 250-300 mN/m。同时,BSA/GuHCl、BLG/GuHCl 和溶菌酶/GuHCl 溶液的表面弹性是表面年龄的非单调函数,并且在接近平衡时不超过 50 mN/m。肌红蛋白/GuHCl 溶液的高表面弹性可能与表面层中蛋白质的聚集有关。聚集的形成通过椭圆光度法和布鲁斯特角显微镜得到证实。向蛋白质溶液中添加离子型表面活性剂会导致肌红蛋白/表面活性剂复合物的形成,并且动态表面弹性的动力学依赖性显示局部最大值,表明多步吸附动力学,与混合有离子型表面活性剂的其他球状蛋白的相应结果不同。椭圆光度法和红外反射吸收光谱法允许在高表面活性剂浓度下追踪复合物的吸附及其从界面的置换。