Suppr超能文献

气体和液体状流体行为的熵标度划分。

An entropy scaling demarcation of gas- and liquid-like fluid behaviors.

作者信息

Bell Ian H, Galliero Guillaume, Delage-Santacreu Stéphanie, Costigliola Lorenzo

机构信息

Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

Universite de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau, France.

出版信息

J Chem Phys. 2020 May 21;152(19):191102. doi: 10.1063/1.5143854.

Abstract

In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess entropy approximately equal to -2/3 times Boltzmann's constant and corresponds to points in the thermodynamic phase diagram for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.

摘要

在这项工作中,我们从剪切粘度的角度提出了一个通用且简单的定义,用于区分类气态和类液态流体行为。即使对于诸如硬球和逆幂律等呈现单一流体相的流体,该定义也是有效的。我们认为这条线是由宏观尺度粘度作为过量熵的函数绘制时的最小值位置所定义的,这与常见的维德曼线不同。对于硬球、 Lennard-Jones 和逆幂律流体,这样一条线位于过量熵约等于玻尔兹曼常数的 -2/3 倍处,并且对应于热力学相图中动力学对粘度的贡献约为总粘度一半的点。对于柔性 Lennard-Jones 链,最小值处的过量熵是链长的线性函数。这个定义为从高精度热力学模型可获得的单个热力学量来分类流体的动力学行为开辟了一条直接的途径。

相似文献

1
An entropy scaling demarcation of gas- and liquid-like fluid behaviors.
J Chem Phys. 2020 May 21;152(19):191102. doi: 10.1063/1.5143854.
2
Dynamic Crossover in Fluids: From Hard Spheres to Molecules.
J Phys Chem Lett. 2021 Jul 15;12(27):6411-6417. doi: 10.1021/acs.jpclett.1c01594. Epub 2021 Jul 7.
3
4
Excess entropy scaling of transport properties of Lennard-Jones chains.
J Chem Phys. 2008 Oct 28;129(16):164904. doi: 10.1063/1.2995990.
5
Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid.
J Phys Chem B. 2019 Jul 25;123(29):6345-6363. doi: 10.1021/acs.jpcb.9b05808. Epub 2019 Jul 12.
6
Onset of simple liquid behaviour in modified water models.
J Chem Phys. 2014 Apr 28;140(16):164501. doi: 10.1063/1.4870823.
7
Entropy Scaling of Viscosity - II: Predictive Scheme for Normal Alkanes.
J Chem Eng Data. 2020 Oct 16;65(11). doi: 10.1021/acs.jced.0c00749.
8
Excess entropy and Stokes-Einstein relation in simple fluids.
Phys Rev E. 2021 Oct;104(4-1):044110. doi: 10.1103/PhysRevE.104.044110.
9
Excess entropy scaling for the segmental and global dynamics of polyethylene melts.
Phys Chem Chem Phys. 2014 Nov 28;16(44):24301-11. doi: 10.1039/c4cp03559c.

引用本文的文献

2
Entropy Scaling of Viscosity - II: Predictive Scheme for Normal Alkanes.
J Chem Eng Data. 2020 Oct 16;65(11). doi: 10.1021/acs.jced.0c00749.
3
Entropy Scaling of Viscosity - I: A Case Study of Propane.
J Chem Eng Data. 2020;65(6). doi: 10.1021/acs.jced.0c00209.

本文引用的文献

1
Transport coefficients of the Lennard-Jones fluid close to the freezing line.
J Chem Phys. 2019 Nov 28;151(20):204502. doi: 10.1063/1.5128707.
2
Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid.
J Phys Chem B. 2019 Jul 25;123(29):6345-6363. doi: 10.1021/acs.jpcb.9b05808. Epub 2019 Jul 12.
3
Probing the link between residual entropy and viscosity of molecular fluids and model potentials.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4070-4079. doi: 10.1073/pnas.1815943116. Epub 2019 Feb 15.
4
Revisiting the Stokes-Einstein relation without a hydrodynamic diameter.
J Chem Phys. 2019 Jan 14;150(2):021101. doi: 10.1063/1.5080662.
5
Perspective: Excess-entropy scaling.
J Chem Phys. 2018 Dec 7;149(21):210901. doi: 10.1063/1.5055064.
8
Reply to "Comment on 'Behavior of Supercritical Fluids across the Frenkel Line'".
J Phys Chem B. 2018 Jun 7;122(22):6120-6123. doi: 10.1021/acs.jpcb.8b01900. Epub 2018 May 21.
9
Comment on "Behavior of Supercritical Fluids across the 'Frenkel Line'".
J Phys Chem B. 2018 Jun 7;122(22):6124-6128. doi: 10.1021/acs.jpcb.7b11359. Epub 2018 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验