Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Vigo, Galicia, Spain.
Methods Mol Biol. 2021;2259:227-246. doi: 10.1007/978-1-0716-1178-4_15.
Carbonylation is a nonenzymatic irreversible posttranslational protein modification and the main hallmark of protein oxidative damage. Elevated levels of protein carbonyl groups have been detected in age-related and metabolic diseases such as obesity, diabetes, Alzheimer, Parkinson, and several other oxidative stress-related maladies. Interestingly, many studies have shown that only a subset of proteins is carbonylated under the conditions of oxidative stress, demonstrating that carbonylation is a highly selective process. As a consequence, identifying and quantifying the disease-induced changes on a certain carbonylome are crucial to understanding the etiology and progression of numerous diseases and then designing adequate prevention/palliation strategies. However, the low abundance of carbonylated proteins in vivo, the enormous diversity of reactive species, and their relative lability make the analysis of carbonylated proteins a challenging task for redox proteomic technology. Therefore, we present a proteomic approach based on the labeling of carbonyls formed in vivo on proteins using the fluorescein 5-thiosemicarbazide (FTSC) tag to detect the subset of carbonylated proteins among a complex mixture of proteins regardless of the nature of carbonyl adduct, isolation and relative quantification of carbonylated proteins in 2D gel electrophoresis, and protein identification by LC-MS/MS analysis. This method has been successfully used for the evaluation of in vivo protein carbonylation in very diverse animal tissues (plasma, liver, kidney, skeletal muscle, and adipose tissue) and species (from fish to mammalian) and has also been applied in different research fields (from food technology to nutrition), demonstrating its robustness and reliability.
羰基化作用是一种非酶促的、不可逆的蛋白质翻译后修饰,也是蛋白质氧化损伤的主要标志。在与年龄相关的疾病和代谢性疾病中,如肥胖、糖尿病、阿尔茨海默病、帕金森病和其他几种与氧化应激相关的疾病中,已经检测到蛋白质羰基水平升高。有趣的是,许多研究表明,在氧化应激条件下,只有一部分蛋白质发生羰基化,这表明羰基化是一个高度选择性的过程。因此,鉴定和量化羰基组在疾病状态下的变化对于理解许多疾病的病因和进展,然后设计适当的预防/缓解策略至关重要。然而,体内羰基化蛋白的丰度低、反应性物质的多样性巨大以及它们的相对不稳定性使得氧化还原蛋白质组学技术对羰基化蛋白的分析成为一项具有挑战性的任务。因此,我们提出了一种基于使用荧光素 5-硫代半卡巴腙(FTSC)标签标记体内蛋白质形成的羰基的蛋白质组学方法,用于检测复杂蛋白质混合物中羰基化蛋白质的亚组,而与羰基加合物的性质、在 2D 凝胶电泳中的分离和相对定量以及通过 LC-MS/MS 分析进行蛋白质鉴定无关。该方法已成功用于评估非常不同的动物组织(血浆、肝脏、肾脏、骨骼肌和脂肪组织)和物种(从鱼类到哺乳动物)的体内蛋白质羰基化,并且还应用于不同的研究领域(从食品技术到营养),证明了其稳健性和可靠性。