Suppr超能文献

溶剂对 FPGK 中二酮哌嗪形成的影响。

Influence of Solvents upon Diketopiperazine Formation of FPGK.

机构信息

Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.

Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States.

出版信息

J Phys Chem B. 2021 Mar 25;125(11):2952-2959. doi: 10.1021/acs.jpcb.1c00269. Epub 2021 Mar 10.

Abstract

Ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques were used to monitor diketopiperazine (DKP) formation from the peptide FPGK at multiple defined temperatures in methanol, ethanol, propanol, and water, with the motivation to study the effect of solvent polarity on spontaneous solution dissociation. The reaction rate increases with decreasing solvent polarity. The observed rates of → isomerization of Phe-Pro and the -Pro isomer dissociation result in the isomer growing in abundance relative to the isomer throughout the reaction in all solvents. Analysis of rate constants derived from the data using a sequential unimolecular kinetics model that includes hidden intermediate states yields transition state thermodynamic values for both → isomerization of Phe-Pro and dissociation. The measured thermochemistry appears to be closely correlated with these solvents' dielectric constants: a lower solvent dielectric constant accelerates the reaction by reducing the enthalpic barrier, albeit with slight entropic restriction.

摘要

离子淌度谱(IMS)和质谱(MS)技术被用于监测在甲醇、乙醇、丙醇和水中的多肽 FPGK 形成二酮哌嗪(DKP)的过程,在多个定义的温度下进行,其动机是研究溶剂极性对自发溶液离解的影响。反应速率随着溶剂极性的降低而增加。在所有溶剂中,观察到的 Phe-Pro 的 → 异构化和 -Pro 异构体解离的反应速率导致 → 异构体相对于 异构体在整个反应中丰度增加。使用包括隐藏中间态的顺序单分子动力学模型对从数据中得出的速率常数进行分析,得到了 Phe-Pro 的 → 异构化和离解的过渡态热力学值。测量的热化学似乎与这些溶剂的介电常数密切相关:较低的溶剂介电常数通过降低焓垒加速反应,尽管有轻微的熵限制。

相似文献

1
Influence of Solvents upon Diketopiperazine Formation of FPGK.
J Phys Chem B. 2021 Mar 25;125(11):2952-2959. doi: 10.1021/acs.jpcb.1c00269. Epub 2021 Mar 10.
2
Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages.
J Am Soc Mass Spectrom. 2019 Jun;30(6):919-931. doi: 10.1007/s13361-019-02159-w. Epub 2019 Apr 12.
3
Diketopiperazine Formation from FPGK ( = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms.
J Phys Chem B. 2021 Jul 29;125(29):8107-8116. doi: 10.1021/acs.jpcb.1c03515. Epub 2021 Jul 16.
4
Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation.
J Am Soc Mass Spectrom. 2022 Aug 3;33(8):1368-1376. doi: 10.1021/jasms.2c00037. Epub 2022 May 16.
6
Conformationally Regulated Peptide Bond Cleavage in Bradykinin.
J Am Chem Soc. 2018 Aug 1;140(30):9357-9360. doi: 10.1021/jacs.8b04751. Epub 2018 Jul 23.
7
Kinetics of diketopiperazine formation using model peptides.
J Pharm Sci. 1998 Mar;87(3):283-8. doi: 10.1021/js970325m.
8
Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding.
J Am Soc Mass Spectrom. 2016 Jan;27(1):22-30. doi: 10.1007/s13361-015-1255-2. Epub 2015 Sep 11.
10
The effect of molecular environment on the photoisomerization of urocanic acid.
Photochem Photobiol. 2004 Sep-Oct;80(2):257-61. doi: 10.1562/2004-05-11-RA-163.

引用本文的文献

1
Stability of Protein Pharmaceuticals: Recent Advances.
Pharm Res. 2024 Jul;41(7):1301-1367. doi: 10.1007/s11095-024-03726-x. Epub 2024 Jun 27.
2
Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation.
J Am Soc Mass Spectrom. 2022 Aug 3;33(8):1368-1376. doi: 10.1021/jasms.2c00037. Epub 2022 May 16.
3
Diketopiperazine Formation from FPGK ( = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms.
J Phys Chem B. 2021 Jul 29;125(29):8107-8116. doi: 10.1021/acs.jpcb.1c03515. Epub 2021 Jul 16.

本文引用的文献

1
Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages.
J Am Soc Mass Spectrom. 2019 Jun;30(6):919-931. doi: 10.1007/s13361-019-02159-w. Epub 2019 Apr 12.
3
Conformationally Regulated Peptide Bond Cleavage in Bradykinin.
J Am Chem Soc. 2018 Aug 1;140(30):9357-9360. doi: 10.1021/jacs.8b04751. Epub 2018 Jul 23.
4
Long-Lived Intermediates in a Cooperative Two-State Folding Transition.
J Phys Chem B. 2016 Dec 1;120(47):12040-12046. doi: 10.1021/acs.jpcb.6b08932. Epub 2016 Nov 21.
5
Enthalpy-Entropy Compensation (EEC) Effect: A Revisit.
J Phys Chem B. 2015 Dec 31;119(52):15876-84. doi: 10.1021/acs.jpcb.5b09925. Epub 2015 Dec 17.
6
Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding.
J Am Soc Mass Spectrom. 2016 Jan;27(1):22-30. doi: 10.1007/s13361-015-1255-2. Epub 2015 Sep 11.
7
Configurationally-Coupled Protonation of Polyproline-7.
J Am Chem Soc. 2015 Jul 15;137(27):8680-3. doi: 10.1021/jacs.5b04287. Epub 2015 Jul 1.
9
MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia.
Sci Transl Med. 2013 Sep 18;5(203):203ra125. doi: 10.1126/scitranslmed.3006061.
10
Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design.
Annu Rev Biophys. 2013;42:121-42. doi: 10.1146/annurev-biophys-083012-130318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验