Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
Mol Cell Endocrinol. 2021 May 15;528:111227. doi: 10.1016/j.mce.2021.111227. Epub 2021 Mar 6.
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
甲状腺球蛋白(TG)在甲状腺激素(TH)的生物合成中起着主要作用,因此,它参与了所有脊椎动物生命周期中的广泛重要功能。由于 TG 遗传变异导致 TH 产生不足而引起的先天性甲状腺功能减退症(CH),如果不治疗,会导致智力残疾和生长受损等严重后果。迄今为止,已经在人类 TG 基因中发现了 229 种变异,而 TG 的 3D 结构最近也已出现。尽管 TG 缺乏症被认为是常染色体隐性遗传,但大规模测序平台的引入导致了各种单等位基因 TG 变异(与其他甲状腺基因产物的突变相结合)的鉴定,从而对该疾病的寡基因遗传可能性提出了新的问题。在这篇综述中,我们讨论了对 TG 结构和与 TG 缺陷相关的 CH 的病理生理学的理解的显著进展,为先天性疾病的管理以及具有 TG 异常病史的家庭的咨询提供了新的见解。此外,我们总结了 TG 内 TH 合成的相关方面,并对 TG 缺乏症的动物和细胞模型进行了更新分析,以研究甲状腺激素生成障碍的病理生理学,同时强调了新研究的前景。总之,尽管在过去的 50 年中,人们对 TG 在甲状腺病理生理学中的作用的理解取得了持续进展,但 TG 变异的功能特征仍然是该领域未来研究的重要领域。