Suppr超能文献

快速电荷分离促进石墨烯-MoS结处的太阳能制氢:时域从头算分析

Rapid Charge Separation Boosts Solar Hydrogen Generation at the Graphene-MoS Junction: Time-Domain Ab Initio Analysis.

作者信息

Wang Xiaoli, Long Run

机构信息

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.

出版信息

J Phys Chem Lett. 2021 Mar 25;12(11):2763-2769. doi: 10.1021/acs.jpclett.1c00322. Epub 2021 Mar 11.

Abstract

Transition metal dichalcogenides and graphene hybrids hold great promise for photovoltaics and photocatalysts. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we investigate the interplay between forward and backward electron transfer (ET), as well as energy relaxation in a van der Waals graphene-MoS heterojunction. We demonstrated that built-in potential formed at the polarized interface produces charge separation upon photoexcitation. The electron left on graphene is injected into MoS on an ultrafast time scale, which is notably faster than energy losses to heat regardless of the initial state energy. Once the electron is relaxed to the conduction band edge state of MoS, it transfers back and recombines with the hole remaining on graphene on ultrafast time scales by considering quantum transitions among multiple k points. The obtained time scales for ET, back-ET, and energy relaxation agree well with experimental data. The study reveals that ET that is faster than energy loss makes the graphene-MoS heterojunction efficient for optoelectronic applications.

摘要

过渡金属二硫属化物与石墨烯的杂化物在光伏和光催化剂方面具有巨大潜力。我们结合时域密度泛函理论和非绝热分子动力学,研究了范德华石墨烯 - 二硫化钼异质结中正向和反向电子转移(ET)之间的相互作用以及能量弛豫。我们证明,在极化界面处形成的内建电势在光激发时会产生电荷分离。留在石墨烯上的电子在超快时间尺度上注入到二硫化钼中,无论初始态能量如何,这一过程都明显快于向热的能量损失。一旦电子弛豫到二硫化钼的导带边缘态,通过考虑多个k点之间的量子跃迁,它会在超快时间尺度上反向转移并与留在石墨烯上的空穴复合。所获得的电子转移、反向电子转移和能量弛豫的时间尺度与实验数据吻合良好。该研究表明,比能量损失更快的电子转移使得石墨烯 - 二硫化钼异质结在光电子应用中具有高效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验