Suppr超能文献

使用锌基多金属氧酸盐作为非常规CO还原催化剂选择性光催化生产CH

Selective photocatalytic production of CH using Zn-based polyoxometalate as a nonconventional CO reduction catalyst.

作者信息

Kim Nayeong, Nam Jung Seung, Jo Jinhyeong, Seong Junmo, Kim Hyunwoo, Kwon Youngkook, Lah Myoung Soo, Lee Jun Hee, Kwon Tae-Hyuk, Ryu Jungki

机构信息

Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

Department of Chemistry, School of Nature Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

出版信息

Nanoscale Horiz. 2021 May 1;6(5):379-385. doi: 10.1039/d0nh00657b. Epub 2021 Mar 15.

Abstract

Efficient and selective production of CH through the CO reduction reaction (CO2RR) is a challenging task due to the high amount of energy consumption and various reaction pathways. Here, we report the synthesis of Zn-based polyoxometalate (ZnPOM) and its application in the photocatalytic CO2RR. Unlike conventional Zn-based catalysts that produce CO, ZnPOM can selectively catalyze the production of CH in the presence of an Ir-based photosensitizer (TIr3) through the photocatalytic CO2RR. Photophysical and computation analyses suggest that selective photocatalytic production of CH using ZnPOM and TIr3 can be attributed to (1) the exceptionally fast transfer of photogenerated electrons from TIr3 to ZnPOM through the strong molecular interactions between them and (2) effective transfer of electrons from ZnPOM to *CO intermediates due to significant hybridization of their molecular orbitals. This study provides insights into the design of novel CO2RR catalysts for CH production beyond the limitations in conventional studies that focus on Cu-based materials.

摘要

由于高能耗和多种反应途径,通过二氧化碳还原反应(CO₂RR)高效且选择性地生产甲烷(CH)是一项具有挑战性的任务。在此,我们报道了锌基多金属氧酸盐(ZnPOM)的合成及其在光催化CO₂RR中的应用。与传统的生成一氧化碳(CO)的锌基催化剂不同,ZnPOM在基于铱的光敏剂(TIr3)存在下,可通过光催化CO₂RR选择性地催化生成CH。光物理和计算分析表明,使用ZnPOM和TIr3选择性光催化生成CH可归因于:(1)光生电子通过它们之间强烈的分子相互作用从TIr3异常快速地转移到ZnPOM;(2)由于它们分子轨道的显著杂化,电子从ZnPOM有效地转移到*CO中间体。本研究为设计用于CH生产的新型CO₂RR催化剂提供了见解,突破了传统研究中侧重于铜基材料的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验