Fink Karin, Höfener Sebastian
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3630, 76021 Karlsruhe, Germany.
Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049 Karlsruhe, Germany.
J Chem Phys. 2021 Mar 14;154(10):104114. doi: 10.1063/5.0041501.
We present the combination of wavefunction frozen-density embedding (FDE) with a periodic repetition in one dimension (1D) for molecular systems in the KOALA program. In this periodic orbital-uncoupled FDE ansatz, no wavefunction overlap is taken into account, and only the electron density of the active subsystem is computed explicitly. This density is relaxed in the presence of the environment potential, which is obtained by translating the updated active subsystem density, yielding a fully self-consistent solution at convergence. Treating only one subsystem explicitly, the method allows for the calculation of local properties in condensed molecular systems, while no orbital band structure is obtained preventing the application, e.g., to systems with metallic bonding. In order to illustrate possible applications of the new implementation, selected case studies are presented, ranging from ground-state dipole moments using configuration interaction methods via excitation energies using time-dependent density-functional theory to ionization potentials obtained from equation-of-motion correlation methods. Different levels of approximations are assessed, revealing that an active subsystem consisting of two or three molecules leads to results that are converged with respect to the environment contributions.
我们在KOALA程序中展示了波函数冻结密度嵌入(FDE)与一维(1D)周期性重复相结合用于分子系统的方法。在这种周期性轨道解耦的FDE近似中,不考虑波函数重叠,仅显式计算活性子系统的电子密度。该密度在环境势存在的情况下进行弛豫,环境势通过平移更新后的活性子系统密度获得,在收敛时产生完全自洽的解。仅显式处理一个子系统,该方法允许计算凝聚分子系统中的局部性质,但无法获得轨道能带结构,这限制了其应用,例如,无法应用于具有金属键的系统。为了说明新实现方式的可能应用,我们展示了选定的案例研究,范围从使用组态相互作用方法计算基态偶极矩,到使用含时密度泛函理论计算激发能,再到使用运动方程相关方法获得电离势。评估了不同程度的近似,结果表明由两个或三个分子组成的活性子系统能得出关于环境贡献收敛的结果。