Suppr超能文献

在铁氟龙上原位组装双金属金属有机框架复合材料作为析氧反应的高效电催化剂。

In situ assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction.

作者信息

Zhang Yeqing, Wang Jinlei, Ye Lei, Zhang Meilin, Gong Yaqiong

机构信息

School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi 030051, China.

出版信息

Dalton Trans. 2021 Apr 7;50(13):4720-4726. doi: 10.1039/d0dt04397d. Epub 2021 Mar 17.

Abstract

Since the complicated multiple electron transfer process and slow kinetics in the OER process seriously hinder the electrochemical decomposition of water, it is urgent to design and develop electrocatalysts with excellent performance and superior stability to reduce overpotential and accelerate the reaction dynamics of the OER. Herein, a unique ultra-thin nanosheet bimetal electrocatalyst NiFe-MOF/IF was synthesized by a one-step hydrothermal method, and characterized by SEM, XRD, TEM, and XPS. NiFe-MOF/IF shows superior OER electrocatalytic activity in 1 M KOH electrolyte solution, and an ultralow overpotential of only 230 and 262 mV was required to achieve a current density of 10 and 100 mA cm, respectively, with a relatively small Tafel slope of 30.46 mV dec for the OER. No obvious degradation of the current density at 10 mA cm was observed over about 16 h, which indicates the excellent stability of the catalyst. Favourable activity and benign durability of NiFe-MOF/IF can be attributed to the three-dimensional high porosity conductive substrates, in situ growth of MOF nanosheets, bimetallic synergy, and unique layering. This research provides a promising strategy for the application of MOF materials in the field of electrocatalysis.

摘要

由于析氧反应(OER)过程中复杂的多电子转移过程和缓慢的动力学严重阻碍了水的电化学分解,因此迫切需要设计和开发具有优异性能和卓越稳定性的电催化剂,以降低过电位并加速OER的反应动力学。在此,通过一步水热法合成了一种独特的超薄纳米片双金属电催化剂NiFe-MOF/IF,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对其进行了表征。NiFe-MOF/IF在1 M KOH电解质溶液中表现出优异的OER电催化活性,在电流密度分别达到10和100 mA cm时,所需的超电势仅为230和262 mV,OER的塔菲尔斜率相对较小,为30.46 mV dec。在约16 h内未观察到10 mA cm下电流密度的明显下降,这表明该催化剂具有优异的稳定性。NiFe-MOF/IF良好的活性和优异的耐久性可归因于三维高孔隙率导电基底、MOF纳米片的原位生长、双金属协同作用和独特的分层结构。本研究为MOF材料在电催化领域的应用提供了一种有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验