Tantardini Christian, Kvashnin Alexander G, Gatti Carlo, Yakobson Boris I, Gonze Xavier
Skolkovo Institute of Science and Technology, 3 Nobel Street, 121025 Moscow, Russian Federation.
Institute of Solid State Chemistry and Mechanochemistry SB RAS, 630128 Novosibirsk, Russian Federation.
ACS Nano. 2021 Apr 27;15(4):6861-6871. doi: 10.1021/acsnano.0c10609. Epub 2021 Mar 17.
To study the possibility for silicene to be employed as a field-effect transistor (FET) pressure sensor, we explore the chemistry of monolayer and multilayered silicene focusing on the change in hybridization under pressure. computations show that the effect of pressure depends greatly on the thickness of the silicene film, but also reveals the influence of real experimental conditions, where the pressure is not hydrostatic. For this purpose, we introduce anisotropic strain states. With pure uniaxial stress applied to silicene layers, a path for sp silicon to spd silicon is found, unlike with pure hydrostatic pressure. Even with mixed-mode stress (in-plane pressure half of the out-of-plane one), we find no such path. In addition to introducing our theoretical approach to study 2D materials, we show how the hybridization change of silicene under pressure makes it a good FET pressure sensor.
为了研究硅烯用作场效应晶体管(FET)压力传感器的可能性,我们探索了单层和多层硅烯的化学性质,重点关注压力下杂化的变化。计算表明,压力的影响在很大程度上取决于硅烯薄膜的厚度,但也揭示了实际实验条件(压力并非静水压力)的影响。为此,我们引入了各向异性应变状态。当对硅烯层施加纯单轴应力时,发现了从sp硅到spd硅的路径,这与纯静水压力的情况不同。即使在混合模式应力(面内压力为面外压力的一半)下,我们也未发现这样的路径。除了介绍我们研究二维材料的理论方法外,我们还展示了压力下硅烯的杂化变化如何使其成为一种良好的FET压力传感器。