Suppr超能文献

非线性非局部模型的金兹堡-朗道振幅方程

Ginzburg-Landau amplitude equation for nonlinear nonlocal models.

作者信息

Garlaschi Stefano, Gupta Deepak, Maritan Amos, Azaele Sandro

机构信息

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy.

出版信息

Phys Rev E. 2021 Feb;103(2-1):022210. doi: 10.1103/PhysRevE.103.022210.

Abstract

Regular spatial structures emerge in a wide range of different dynamics characterized by local and/or nonlocal coupling terms. In several research fields this has spurred the study of many models, which can explain pattern formation. The modulations of patterns, occurring on long spatial and temporal scales, cannot be captured by linear approximation analysis. Here, we show that, starting from a general model with long range couplings displaying patterns, the spatiotemporal evolution of large-scale modulations at the onset of instability is ruled by the well-known Ginzburg-Landau equation, independently of the details of the dynamics. Hence, we demonstrate the validity of such equation in the description of the behavior of a wide class of systems. We introduce a mathematical framework that is also able to retrieve the analytical expressions of the coefficients appearing in the Ginzburg-Landau equation as functions of the model parameters. Such framework can include higher order nonlocal interactions and has much larger applicability than the model considered here, possibly including pattern formation in models with very different physical features.

摘要

规则的空间结构出现在以局部和/或非局部耦合项为特征的广泛不同动力学中。在几个研究领域,这激发了对许多模型的研究,这些模型可以解释图案形成。在长空间和时间尺度上发生的图案调制不能通过线性近似分析来捕捉。在这里,我们表明,从一个具有长程耦合且显示图案的一般模型开始,不稳定开始时大规模调制的时空演化由著名的金兹堡 - 朗道方程支配,而与动力学细节无关。因此,我们证明了该方程在描述广泛一类系统行为方面的有效性。我们引入了一个数学框架,该框架还能够检索出金兹堡 - 朗道方程中出现的系数作为模型参数函数的解析表达式。这样的框架可以包括高阶非局部相互作用,并且比这里考虑的模型具有更大的适用性,可能包括具有非常不同物理特征的模型中的图案形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验