Suppr超能文献

Transition from linear Landau damping to nonlinear Bernstein-Greene-Kruskal modes via phase synchronization.

作者信息

Xu Shaokang, Guo Z B, Gürcan Ö D

机构信息

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China.

Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France.

出版信息

Phys Rev E. 2021 Feb;103(2-1):023208. doi: 10.1103/PhysRevE.103.023208.

Abstract

Dynamics of the transition from a linear plasma wave to a nonlinear state characterized by the Bernstein-Greene-Kruskal mode is studied within the framework of the Vlasov-Poisson system. In the linear stage, the plasma distribution function (f) develops finer and finer structures in velocity space through a series of "mixing" processes leading to the Landau damping of the plasma wave. These mixing processes inevitably result in strong phase irregularities in velocity space. Using numerical simulations, it was observed that starting from the wave-particle resonance region, this irregular phase pattern gets "smoothed out" through a process of spreading of phase synchronization, which tends to reduce Landau damping, facilitating the formation of the nonlinear plasma wave as a fully synchronized final state. It is also found that there exists a residual damping for the quasisteady nonlinear wave when the phases of the particles are not fully synchronized.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验