Suppr超能文献

调整有机光伏中界面态的能量以实现最高效率。

Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency.

作者信息

Gasparini Nicola, Camargo Franco V A, Frühwald Stefan, Nagahara Tetsuhiko, Classen Andrej, Roland Steffen, Wadsworth Andrew, Gregoriou Vasilis G, Chochos Christos L, Neher Dieter, Salvador Michael, Baran Derya, McCulloch Iain, Görling Andreas, Lüer Larry, Cerullo Giulio, Brabec Christoph J

机构信息

Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK.

Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Nat Commun. 2021 Mar 19;12(1):1772. doi: 10.1038/s41467-021-22032-3.

Abstract

A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.

摘要

提高有机太阳能电池(OSC)性能的一个关键瓶颈是通过形成混合能量状态来最小化界面电荷转移(CT)状态下的非辐射损失。这需要较小的能量偏移,而这通常对高外部量子效率(EQE)不利。在此,我们获得了非辐射电压损失(0.24 V)和光电流损失(EQE > 80%)同时最小化的有机太阳能电池。界面CT状态以约40皮秒的时间常数分离为自由载流子。我们结合器件和光谱数据对电荷分离和提取的热力学进行建模,揭示器件的相对高性能源于CT状态能量的最佳调整,这决定了可用的总驱动力如何有效地用于最大化激子分裂和电荷分离。所提出的模型对于低驱动力的供体:受体(D:A)是通用的,并预测哪些D:A将受益于高效有机太阳能电池的形态优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2470/7979693/4726e74b535e/41467_2021_22032_Fig1_HTML.jpg

相似文献

1
Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency.
Nat Commun. 2021 Mar 19;12(1):1772. doi: 10.1038/s41467-021-22032-3.
2
Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
Acc Chem Res. 2022 Mar 15;55(6):869-877. doi: 10.1021/acs.accounts.1c00742. Epub 2022 Mar 1.
3
Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer.
Adv Mater. 2018 Nov;30(45):e1804215. doi: 10.1002/adma.201804215. Epub 2018 Oct 1.
4
Lower limits for non-radiative recombination loss in organic donor/acceptor complexes.
Mater Horiz. 2022 Jan 4;9(1):325-333. doi: 10.1039/d1mh00529d.
5
Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
Acc Chem Res. 2019 Oct 15;52(10):2904-2915. doi: 10.1021/acs.accounts.9b00331. Epub 2019 Oct 2.
7
Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells.
J Am Chem Soc. 2019 Apr 17;141(15):6362-6374. doi: 10.1021/jacs.9b01465. Epub 2019 Apr 3.
8
Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells.
Adv Mater. 2023 Sep;35(35):e2302452. doi: 10.1002/adma.202302452. Epub 2023 Jul 31.
9
Design rules for minimizing voltage losses in high-efficiency organic solar cells.
Nat Mater. 2018 Aug;17(8):703-709. doi: 10.1038/s41563-018-0128-z. Epub 2018 Jul 16.
10
Role of the charge transfer state in organic donor-acceptor solar cells.
Adv Mater. 2010 Oct 1;22(37):4097-111. doi: 10.1002/adma.201000376.

引用本文的文献

2
Super-resolution techniques to simulate electronic spectra of large molecular systems.
Nat Commun. 2024 Sep 12;15(1):8001. doi: 10.1038/s41467-024-52368-5.
3
Synthetic model interfaces for the study of intermolecular charge-transfer states.
Nat Chem. 2024 Sep;16(9):1396-1397. doi: 10.1038/s41557-024-01579-w.
4
Exciton Transport in the Nonfullerene Acceptor O-IDTBR from Nonadiabatic Molecular Dynamics.
J Chem Theory Comput. 2024 Jul 23;20(14):6241-6252. doi: 10.1021/acs.jctc.4c00605. Epub 2024 Jul 5.
5
Limiting factors for charge generation in low-offset fullerene-based organic solar cells.
Nat Commun. 2024 Jun 28;15(1):5488. doi: 10.1038/s41467-024-49432-5.
6
Maximizing Performance and Stability of Organic Solar Cells at Low Driving Force for Charge Separation.
Adv Sci (Weinh). 2024 Feb;11(6):e2305948. doi: 10.1002/advs.202305948. Epub 2023 Dec 1.
7
Biorenewable Solvents for High-Performance Organic Solar Cells.
ACS Energy Lett. 2023 Jun 16;8(7):3038-3047. doi: 10.1021/acsenergylett.3c00891. eCollection 2023 Jul 14.
8
Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure.
Sci Adv. 2023 Jun 9;9(23):eadh2694. doi: 10.1126/sciadv.adh2694. Epub 2023 Jun 7.

本文引用的文献

2
Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells.
Nat Mater. 2021 Mar;20(3):378-384. doi: 10.1038/s41563-020-00835-x. Epub 2020 Oct 23.
3
Buildup of Triplet-State Population in Operating TQ1:PCBM Devices Does Not Limit Their Performance.
J Phys Chem Lett. 2020 Apr 16;11(8):2838-2845. doi: 10.1021/acs.jpclett.0c00756. Epub 2020 Mar 27.
5
Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell.
Adv Mater. 2020 Mar;32(9):e1906763. doi: 10.1002/adma.201906763. Epub 2020 Jan 24.
6
17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS as a Replacement for PEDOT:PSS.
Adv Mater. 2019 Nov;31(46):e1902965. doi: 10.1002/adma.201902965. Epub 2019 Sep 30.
7
Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells.
Adv Mater. 2019 Sep;31(36):e1902302. doi: 10.1002/adma.201902302. Epub 2019 Jul 11.
9
Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses.
Nat Mater. 2019 May;18(5):459-464. doi: 10.1038/s41563-019-0324-5. Epub 2019 Apr 1.
10
Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells.
J Am Chem Soc. 2019 Apr 17;141(15):6362-6374. doi: 10.1021/jacs.9b01465. Epub 2019 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验