Suppr超能文献

用于锂离子电池的硅-纳米石墨气凝胶基负极的高度稳定循环性能

Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries.

作者信息

Patil Rohan, Phadatare Manisha, Blomquist Nicklas, Örtegren Jonas, Hummelgård Magnus, Meshram Jagruti, Dubal Deepak, Olin Håkan

机构信息

Department of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden.

Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed University), Kolhapur, Maharashtra 416006, India.

出版信息

ACS Omega. 2021 Mar 1;6(10):6600-6606. doi: 10.1021/acsomega.0c05214. eCollection 2021 Mar 16.

Abstract

Silicon anodes are considered as promising electrode materials for next-generation high capacity lithium-ion batteries (LIBs). However, the capacity fading due to the large volume changes (∼300%) of silicon particles during the charge-discharge cycles is still a bottleneck. The volume changes of silicon lead to a fracture of the silicon particles, resulting in recurrent formation of a solid electrolyte interface (SEI) layer, leading to poor capacity retention and short cycle life. Nanometer-scaled silicon particles are the favorable anode material to reduce some of the problems related to the volume changes, but problems related to SEI layer formation still need to be addressed. Herein, we address these issues by developing a composite anode material comprising silicon nanoparticles and nanographite. The method developed is simple, cost-efficient, and based on an aerogel process. The electrodes produced by this aerogel fabrication route formed a stable SEI layer and showed high specific capacity and improved cyclability even at high current rates. The capacity retentions were 92 and 72% of the initial specific capacity at the 171st and the 500th cycle, respectively.

摘要

硅阳极被认为是下一代高容量锂离子电池(LIBs)很有前景的电极材料。然而,在充放电循环过程中,由于硅颗粒的体积大幅变化(约300%)导致的容量衰减仍然是一个瓶颈。硅的体积变化会导致硅颗粒破裂,从而反复形成固体电解质界面(SEI)层,导致容量保持率低和循环寿命短。纳米级硅颗粒是减少一些与体积变化相关问题的有利阳极材料,但与SEI层形成相关的问题仍需解决。在此,我们通过开发一种由硅纳米颗粒和纳米石墨组成的复合阳极材料来解决这些问题。所开发的方法简单、成本低,且基于气凝胶工艺。通过这种气凝胶制造路线生产的电极形成了稳定的SEI层,并显示出高比容量,即使在高电流速率下也具有改善的循环性能。在第171次和第500次循环时,容量保持率分别为初始比容量的92%和72%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/605a/7970491/9c52b9a4f6a6/ao0c05214_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验