Nadler E O, Drlica-Wagner A, Bechtol K, Mau S, Wechsler R H, Gluscevic V, Boddy K, Pace A B, Li T S, McNanna M, Riley A H, García-Bellido J, Mao Y-Y, Green G, Burke D L, Peter A, Jain B, Abbott T M C, Aguena M, Allam S, Annis J, Avila S, Brooks D, Carrasco Kind M, Carretero J, Costanzi M, da Costa L N, De Vicente J, Desai S, Diehl H T, Doel P, Everett S, Evrard A E, Flaugher B, Frieman J, Gerdes D W, Gruen D, Gruendl R A, Gschwend J, Gutierrez G, Hinton S R, Honscheid K, Huterer D, James D J, Krause E, Kuehn K, Kuropatkin N, Lahav O, Maia M A G, Marshall J L, Menanteau F, Miquel R, Palmese A, Paz-Chinchón F, Plazas A A, Romer A K, Sanchez E, Scarpine V, Serrano S, Sevilla-Noarbe I, Smith M, Soares-Santos M, Suchyta E, Swanson M E C, Tarle G, Tucker D L, Walker A R, Wester W
Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA.
Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2021 Mar 5;126(9):091101. doi: 10.1103/PhysRevLett.126.091101.
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At 95% confidence, we report limits on (i) the mass of thermal relic warm DM, m_{WDM}>6.5 keV (free-streaming length, λ_{fs}≲10h^{-1} kpc), (ii) the velocity-independent DM-proton scattering cross section, σ_{0}<8.8×10^{-29} cm^{2} for a 100 MeV DM particle mass [DM-proton coupling, c_{p}≲(0.3 GeV)^{-2}], and (iii) the mass of fuzzy DM, m_{ϕ}>2.9×10^{-21} eV (de Broglie wavelength, λ_{dB}≲0.5 kpc). These constraints are complementary to other observational and laboratory constraints on DM properties.
我们对银河系(MW)的卫星星系进行了全面研究,以限制暗物质(DM)的基本性质。该分析充分考虑了MW卫星空间分布和可探测性的不均匀性,并对星系与DM晕之间映射的不确定性、MW系统的性质以及MW盘对次晕的破坏进行了边缘化处理。我们的结果与冷的、无碰撞的DM范式一致,并对热的、相互作用的和模糊暗物质的粒子模型给出了迄今为止最强的宇宙学限制。在95%的置信水平下,我们报告了以下限制:(i)热遗迹温暗物质的质量,(m_{WDM}>6.5 keV)(自由流长度,(\lambda_{fs}≲10h^{-1} kpc));(ii)对于质量为100 MeV的DM粒子,与速度无关的DM-质子散射截面,(\sigma_{0}<8.8×10^{-29} cm^{2}) [DM-质子耦合,(c_{p}≲(0.3 GeV)^{-2})];(iii)模糊暗物质的质量,(m_{ϕ}>2.9×10^{-21} eV)(德布罗意波长,(\lambda_{dB}≲0.5 kpc))。这些限制与对DM性质的其他观测和实验室限制互为补充。