Developmental Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Advanced Light Microscopy Facility, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
BMC Dev Biol. 2021 Mar 22;21(1):8. doi: 10.1186/s12861-021-00239-3.
Vasculogenesis in amniotes is often viewed as two spatially and temporally distinct processes, occurring in the yolk sac and in the embryo. However, the spatial origins of the cells that form the primary intra-embryonic vasculature remain uncertain. In particular, do they obtain their haemato-endothelial cell fate in situ, or do they migrate from elsewhere? Recently developed imaging techniques, together with new Tal1 and existing Flk1 reporter mouse lines, have allowed us to investigate this question directly, by visualising cell trajectories live and in three dimensions.
We describe the pathways that cells follow to form the primary embryonic circulatory system in the mouse embryo. In particular, we show that Tal1-positive cells migrate from within the yolk sac, at its distal border, to contribute to the endocardium, dorsal aortae and head vasculature. Other Tal1 positive cells, similarly activated within the yolk sac, contribute to the yolk sac vasculature. Using single-cell transcriptomics and our imaging, we identify VEGF and Apela as potential chemo-attractants that may regulate the migration into the embryo. The dorsal aortae and head vasculature are known sites of secondary haematopoiesis; given the common origins that we observe, we investigate whether this is also the case for the endocardium. We discover cells budding from the wall of the endocardium with high Tal1 expression and diminished Flk1 expression, indicative of an endothelial to haematopoietic transition.
In contrast to the view that the yolk sac and embryonic circulatory systems form by two separate processes, our results indicate that Tal1-positive cells from the yolk sac contribute to both vascular systems. It may be that initial Tal1 activation in these cells is through a common mechanism.
羊膜动物中的血管发生通常被视为两个在空间和时间上都不同的过程,分别发生在卵黄囊和胚胎中。然而,形成胚胎内最初血管系统的细胞的空间起源仍然不确定。特别是,它们是在原位获得造血内皮细胞命运,还是从其他地方迁移而来?最近开发的成像技术,以及新的 Tal1 和现有的 Flk1 报告鼠系,使我们能够通过活体和三维可视化细胞轨迹直接研究这个问题。
我们描述了细胞在小鼠胚胎中形成原发性胚胎循环系统的途径。特别是,我们表明 Tal1 阳性细胞从卵黄囊的远端边界迁移,以贡献于心内膜、背主动脉和头部血管系统。其他同样在卵黄囊中被激活的 Tal1 阳性细胞有助于卵黄囊血管系统的形成。通过单细胞转录组学和我们的成像,我们确定了 VEGF 和 Apela 作为潜在的趋化因子,可能调节向胚胎的迁移。背主动脉和头部血管系统是二次造血的已知部位;鉴于我们观察到的共同起源,我们研究了心内膜是否也是如此。我们发现从心内膜壁上有高 Tal1 表达和低 Flk1 表达的细胞芽生,表明内皮到造血的转变。
与卵黄囊和胚胎循环系统通过两个独立过程形成的观点相反,我们的结果表明卵黄囊中的 Tal1 阳性细胞有助于两个血管系统。这些细胞中最初的 Tal1 激活可能是通过一个共同的机制。