Suppr超能文献

一种用于预测单向纤维增强复合材料板抗弹道冲击性能的机器学习模型。

A machine learning model for predicting the ballistic impact resistance of unidirectional fiber-reinforced composite plate.

作者信息

Lei X D, Wu X Q, Zhang Z, Xiao K L, Wang Y W, Huang C G

机构信息

Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.

School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Sci Rep. 2021 Mar 22;11(1):6503. doi: 10.1038/s41598-021-85963-3.

Abstract

It has been a vital issue to ensure both the accuracy and efficiency of computational models for analyzing the ballistic impact response of fiber-reinforced composite plates (FRCP). In this paper, a machine learning (ML) model is established in an effort to bridge the ballistic impact protective performance and the characteristics of microstructure for unidirectional FRCP (UD-FRCP), where the microstructure of the UD-FRCP is characterized by the two-point correlation function. The results showed that the ML model, after trained by 175 cases, could reasonably predict the ballistic impact energy absorption of the UD-FRCP with a maximum error of 13%, indicating that the model can ensure both computational accuracy and efficiency. Besides, the model's critical parameter sensitivities are investigated, and three typical ML algorithms are analyzed, showing that the gradient boosting regression algorithm has the highest accuracy among these algorithms for the ballistic impact problem of UD-FRCP. The study proposes an effective solution for the traditional difficulty of the ballistic impact simulation of composites with both high efficiency and accuracy.

摘要

确保用于分析纤维增强复合材料板(FRCP)弹道冲击响应的计算模型的准确性和效率一直是一个至关重要的问题。本文建立了一种机器学习(ML)模型,旨在将弹道冲击防护性能与单向FRCP(UD-FRCP)的微观结构特征联系起来,其中UD-FRCP的微观结构由两点相关函数表征。结果表明,该ML模型在经过175个案例训练后,能够合理预测UD-FRCP的弹道冲击能量吸收,最大误差为13%,这表明该模型能够确保计算的准确性和效率。此外,研究了模型的关键参数敏感性,并分析了三种典型的ML算法,结果表明在UD-FRCP的弹道冲击问题中,梯度提升回归算法在这些算法中具有最高的准确性。该研究为复合材料弹道冲击模拟传统上的难题提出了一种兼具高效性和准确性的有效解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d708/7985305/f139ea37ee4d/41598_2021_85963_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验