Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.
Oncoprot Platform, TBM-Core US 005, Bordeaux, France.
Hepatology. 2021 Sep;74(3):1595-1610. doi: 10.1002/hep.31826. Epub 2021 Jul 13.
Through an exploratory proteomic approach based on typical hepatocellular adenomas (HCAs), we previously identified a diagnostic biomarker for a distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. We hypothesized that the whole protein expression deregulation profile could deliver much more informative data for tumor characterization. Therefore, we pursued our analysis with the characterization of HCA proteomic profiles, evaluating their correspondence with the established genotype/phenotype classification and assessing whether they could provide added diagnosis and prognosis values.
From a collection of 260 cases, we selected 52 typical cases of all different subgroups on which we built a reference HCA proteomics database. Combining laser microdissection and mass-spectrometry-based proteomic analysis, we compared the relative protein abundances between tumoral (T) and nontumoral (NT) liver tissues from each patient and we defined a specific proteomic profile of each of the HCA subgroups. Next, we built a matching algorithm comparing the proteomic profile extracted from a patient with our reference HCA database. Proteomic profiles allowed HCA classification and made diagnosis possible, even for complex cases with immunohistological or genomic analysis that did not lead to a formal conclusion. Despite a well-established pathomolecular classification, clinical practices have not substantially changed and the HCA management link to the assessment of the malignant transformation risk remains delicate for many surgeons. That is why we also identified and validated a proteomic profile that would directly evaluate malignant transformation risk regardless of HCA subtype.
This work proposes a proteomic-based machine learning tool, operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient management for HCAs.
通过基于典型肝细胞腺瘤(HCA)的探索性蛋白质组学方法,我们之前确定了一种具有高出血风险的独特 HCA 亚型的诊断生物标志物,该标志物已在多中心队列中得到验证。我们假设整个蛋白质表达失调谱可以为肿瘤特征提供更具信息量的数据。因此,我们通过对 HCA 蛋白质组谱进行特征分析来继续我们的分析,评估它们与既定基因型/表型分类的对应关系,并评估它们是否可以提供额外的诊断和预后价值。
在收集的 260 例病例中,我们选择了所有不同亚组的 52 例典型病例,在此基础上构建了 HCA 蛋白质组学参考数据库。我们结合激光显微切割和基于质谱的蛋白质组学分析,比较了每位患者肿瘤(T)和非肿瘤(NT)肝组织之间的相对蛋白质丰度,并定义了每个 HCA 亚组的特定蛋白质组谱。接下来,我们构建了一个匹配算法,将从患者中提取的蛋白质组谱与我们的参考 HCA 数据库进行比较。蛋白质组谱可以对 HCA 进行分类,并进行诊断,即使对于免疫组织化学或基因组分析没有得出明确结论的复杂病例也是如此。尽管有明确的病理分子分类,但临床实践并没有实质性改变,HCA 管理与评估恶性转化风险之间的联系对许多外科医生来说仍然很棘手。这就是为什么我们还确定并验证了一种蛋白质组谱,该谱可以直接评估恶性转化风险,而无需考虑 HCA 亚型。
这项工作提出了一种基于蛋白质组学的机器学习工具,可在固定活检上操作,可改善诊断和预后,从而改善 HCA 患者的管理。