Suppr超能文献

Molecular Structure, Quantum Coherence, and Solvent Effects on the Ultrafast Electron Transport in BODIPY- Derivatives.

作者信息

Madrid-Úsuga Duvalier, Reina John H

机构信息

Centre for Bioinformatics and Photonics-CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia.

Departamento de Física, Universidad del Valle, 760032 Cali, Colombia.

出版信息

J Phys Chem A. 2021 Apr 1;125(12):2518-2531. doi: 10.1021/acs.jpca.1c00603. Epub 2021 Mar 23.

Abstract

Photoinduced electron transfer in multichromophore molecular systems is defined by a critical interplay between their core unit configuration (donor, molecular bridge, and acceptor) and their system-solvent coupling; these lead to energy and charge transport processes that are key in the design of molecular antennas for efficient light harvesting and organic photovoltaics. Here, we quantify the ultrafast non-Markovian dissipative dynamics of electron transfer in D-π-A molecular photosystems comprising 1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (BODIPY), Zn-porphyrin, fulleropyrrolidine, and fulleroisoxazoline. We find that the stabilization energy of the charge transfer states exhibits a significant variation for different polar (methanol, tetrahydrofuran (THF)) and nonpolar (toluene) environments and determine such sensitivity according to the molecular structure and the electron-vibration couplings that arise at room temperature. For the considered donor-acceptor (D-A) dyads, we show that the stronger the molecule-solvent coupling, the larger the electron transfer rates, regardless of the dyads' electronic coherence properties. We find such coupling strengths to be the largest (lowest) for methanol (toluene), with an electron transfer rate difference of 2 orders of magnitude between the polar and nonpolar solvents. For the considered donor-bridge-acceptor (D-B-A) triads, the molecular bridge introduces an intermediate state that allows the realization of Λ or cascaded-type energy mechanisms. We show that the latter configuration, obtained for in methanol, exhibits the highest transfer rate of all of the computed triads. Remarkably, and in contrast with the dyads, we show that the larger charge transfer rates are obtained for triads that exhibit prolonged electron coherence and population oscillations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验