Nie Chun-Xiao
School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China.
Chaos. 2021 Jan;31(1):013106. doi: 10.1063/5.0024375.
This paper uses transfer entropy and surrogates to analyze the information flow between price and transaction volume. We use random surrogates to construct local random permutation (LRP) surrogates that can analyze the local information flow in detail. The analysis based on the toy models verifies the effectiveness of the LRP method. We further apply it to analyze three financial datasets, including two index datasets and one stock dataset. Empirical analysis shows that both the S&P500 index data and SSEC index data include rich information flow dynamics. There was a stronger information flow during the stock bubble burst or the financial crisis. In addition, tests based on stock data suggest that market crises may lead to changes in the relationship between prices and trading volume. This paper provides a new way to analyze the price-volume relationship, which can effectively detect the drastic changes in the local information flow, thereby providing a method for studying the impact of events.
本文使用转移熵和替代数据来分析价格与交易量之间的信息流。我们使用随机替代数据构建局部随机排列(LRP)替代数据,以便能够详细分析局部信息流。基于简单模型的分析验证了LRP方法的有效性。我们进一步将其应用于分析三个金融数据集,包括两个指数数据集和一个股票数据集。实证分析表明,标准普尔500指数数据和上证综指数据都包含丰富的信息流动态。在股市泡沫破裂或金融危机期间存在更强的信息流。此外,基于股票数据的测试表明,市场危机可能导致价格与交易量之间的关系发生变化。本文提供了一种分析价格-交易量关系的新方法,该方法可以有效检测局部信息流的剧烈变化,从而为研究事件影响提供一种方法。