Suppr超能文献

环形混沌的拓扑特征:邓氏环形吸引子的分支流形

Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor.

作者信息

Mangiarotti Sylvain, Letellier Christophe

机构信息

Centre d'Études Spatiales de la Biosphère, UPS-CNRS-CNES-IRD-INRA, Observatoire Midi-Pyrénées, 18 avenue Édouard Belin, 31401 Toulouse, France.

Rouen Normandie University-CORIA, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France.

出版信息

Chaos. 2021 Jan;31(1):013129. doi: 10.1063/5.0025924.

Abstract

When a chaotic attractor is produced by a three-dimensional strongly dissipative system, its ultimate characterization is reached when a branched manifold-a template-can be used to describe the relative organization of the unstable periodic orbits around which it is structured. If topological characterization was completed for many chaotic attractors, the case of toroidal chaos-a chaotic regime based on a toroidal structure-is still challenging. We here investigate the topology of toroidal chaos, first by using an inductive approach, starting from the branched manifold for the Rössler attractor. The driven van der Pol system-in Robert Shaw's form-is used as a realization of that branched manifold. Then, using a deductive approach, the branched manifold for the chaotic attractor produced by the Deng toroidal system is extracted from data.

摘要

当一个三维强耗散系统产生一个混沌吸引子时,当一个分支流形——一个模板——可用于描述其周围不稳定周期轨道的相对组织时,就达到了对其最终的表征。如果对许多混沌吸引子完成了拓扑表征,那么环形混沌(一种基于环形结构的混沌状态)的情况仍然具有挑战性。我们在此研究环形混沌的拓扑结构,首先采用归纳法,从罗斯勒吸引子的分支流形入手。以罗伯特·肖的形式表示的受驱范德波尔系统被用作该分支流形的一种实现。然后,采用演绎法,从数据中提取邓环形系统产生的混沌吸引子的分支流形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验