Suppr超能文献

分层和自关注序列自动编码器。

Hierarchical and Self-Attended Sequence Autoencoder.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4975-4986. doi: 10.1109/TPAMI.2021.3068187. Epub 2022 Aug 4.

Abstract

It is important and challenging to infer stochastic latent semantics for natural language applications. The difficulty in stochastic sequential learning is caused by the posterior collapse in variational inference. The input sequence is disregarded in the estimated latent variables. This paper proposes three components to tackle this difficulty and build the variational sequence autoencoder (VSAE) where sufficient latent information is learned for sophisticated sequence representation. First, the complementary encoders based on a long short-term memory (LSTM) and a pyramid bidirectional LSTM are merged to characterize global and structural dependencies of an input sequence, respectively. Second, a stochastic self attention mechanism is incorporated in a recurrent decoder. The latent information is attended to encourage the interaction between inference and generation in an encoder-decoder training procedure. Third, an autoregressive Gaussian prior of latent variable is used to preserve the information bound. Different variants of VSAE are proposed to mitigate the posterior collapse in sequence modeling. A series of experiments are conducted to demonstrate that the proposed individual and hybrid sequence autoencoders substantially improve the performance for variational sequential learning in language modeling and semantic understanding for document classification and summarization.

摘要

对于自然语言应用来说,推断随机潜在语义是重要且具有挑战性的。随机序列学习的难点在于变分推断中的后验崩溃。在估计的潜在变量中忽略了输入序列。本文提出了三个组件来解决这个困难,并构建了变分序列自动编码器(VSAE),在该模型中可以学习到足够的潜在信息,从而实现复杂的序列表示。首先,基于长短期记忆(LSTM)和金字塔双向 LSTM 的互补编码器分别用于描述输入序列的全局和结构依赖关系。其次,在递归解码器中加入了随机自注意力机制。潜在信息被关注,以鼓励编码器-解码器训练过程中的推理和生成之间的交互。第三,使用潜在变量的自回归高斯先验来保留信息边界。提出了不同的 VSAE 变体来减轻序列建模中的后验崩溃。进行了一系列实验,以证明所提出的单个和混合序列自动编码器在语言建模中的变分序列学习和语义理解以及文档分类和摘要中的性能有了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验