Suppr超能文献

蓝藻和微藻光合作用的调节电子传递途径:最新进展和生物技术前景。

Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects.

机构信息

Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland.

出版信息

Physiol Plant. 2021 Oct;173(2):514-525. doi: 10.1111/ppl.13404. Epub 2021 Apr 4.

Abstract

Cyanobacteria and microalgae perform oxygenic photosynthesis where light energy is harnessed to split water into oxygen and protons. This process releases electrons that are used by the photosynthetic electron transport chain to form reducing equivalents that provide energy for the cell metabolism. Constant changes in environmental conditions, such as light availability, temperature, and access to nutrients, create the need to balance the photochemical reactions and the metabolic demands of the cell. Thus, cyanobacteria and microalgae evolved several auxiliary electron transport (AET) pathways to disperse the potentially harmful over-supply of absorbed energy. AET pathways are comprised of electron sinks, e.g. flavodiiron proteins (FDPs) or other terminal oxidases, and pathways that recycle electrons around photosystem I, like NADPH-dehydrogenase-like complexes (NDH) or the ferredoxin-plastoquinone reductase (FQR). Under controlled conditions the need for these AET pathways is decreased and AET can even be energetically wasteful. Therefore, redirecting photosynthetic reducing equivalents to biotechnologically useful reactions, catalyzed by i.e. innate hydrogenases or heterologous enzymes, offers novel possibilities to apply photosynthesis research.

摘要

蓝藻和微藻进行产氧光合作用,其中光能被捕获以将水分解为氧气和质子。这个过程释放出电子,这些电子被光合作用电子传递链用来形成还原当量,为细胞代谢提供能量。环境条件的不断变化,如光照可用性、温度和营养物质的获取,创造了平衡光化学反应和细胞代谢需求的需要。因此,蓝藻和微藻进化出了几种辅助电子传递 (AET) 途径来分散吸收能量的潜在有害过量供应。AET 途径由电子汇,例如黄素铁蛋白 (FDP) 或其他末端氧化酶,以及在光系统 I 周围循环电子的途径组成,如 NADPH 脱氢酶样复合物 (NDH) 或铁氧还蛋白-质体醌还原酶 (FQR)。在受控条件下,这些 AET 途径的需求减少,AET 甚至可能在能量上是浪费的。因此,将光合作用的还原当量重新引导到生物技术上有用的反应中,由例如内在氢化酶或异源酶催化,为应用光合作用研究提供了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验