Shine Emilee E, Crawford Jason M
Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; email:
Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.
Annu Rev Biochem. 2021 Jun 20;90:789-815. doi: 10.1146/annurev-biochem-080320-115307. Epub 2021 Mar 26.
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
人类微生物组编码了一个第二基因组,其基因容量远超宿主。微生物群衍生的小分子可直接作用于人类细胞及其受体,或通过与其生态位中的其他微生物进行功能相互作用间接调节宿主反应。它们的生化复杂性对营养、免疫系统发育、疾病进展和药物代谢以及个体间这些过程的差异有着深远影响。虽然人类微生物组的物种组成已得到深入研究,但将特定微生物分子与宿主表型联系起来的详细机制研究仍处于起步阶段。在本综述中,我们讨论了解码这些相互作用网络所面临的挑战,这需要结合化学生物学、微生物学、免疫学、遗传学、分析化学、生物信息学和合成生物学的跨学科方法。我们重点介绍了微生物群衍生的小分子的重要类别及显著例子。了解这些分子机制对于实现精准微生物组编辑在健康、疾病和治疗反应方面的潜力至关重要。