Suppr超能文献

通过现场仪器、遥感和集成机器学习提供信息的地下水泵监测,为东非的抗旱能力做出贡献。

A contribution to drought resilience in East Africa through groundwater pump monitoring informed by in-situ instrumentation, remote sensing and ensemble machine learning.

作者信息

Thomas Evan, Wilson Daniel, Kathuni Styvers, Libey Anna, Chintalapati Pranav, Coyle Jeremy

机构信息

Mortenson Center in Global Engineering, University of Colorado Boulder, United States of America; SweetSense Inc., United States of America.

SweetSense Inc., United States of America.

出版信息

Sci Total Environ. 2021 Aug 1;780:146486. doi: 10.1016/j.scitotenv.2021.146486. Epub 2021 Mar 19.

Abstract

The prevalence of drought in the Horn of Africa has continued to threaten access to safe and affordable water for millions of people. In order to improve monitoring of water pump functionality, telemetry-connected sensors have been installed on 480 electrical groundwater pumps in arid regions of Kenya and Ethiopia, designed to improve monitoring and support operation and maintenance of these water supplies. In this paper, we describe the development and validation of two classification systems designed to identify the functionality and non-functionality of these electrical pumps, one an expert-informed conditional classifier and the other leveraging machine learning. Given a known relationship between surface water availability and groundwater pump use, the classifiers combine in-situ sensor data with remote sensing indicators for rainfall and surface water. Our validation indicates a overall pump status sensitivity (true positive rate) of 82% for the expert classifier and 84% for the machine learner. When the pump is being used, both classifiers have a 100% true positive rate performance. When a pump is not being used, the specificity (true negative rate) is about 50% for the expert classifier and over 65% for the machine learner. If these detection capabilities were integrated into a repair service, the typical uptime of pumps during drought periods in this region could potentially, if budget resources and institutional incentives for pump repairs were provided, result in a drought-period uptime improvement from 60% to nearly of 85% - a 40% reduction in the relative risk of pump downtime.

摘要

非洲之角干旱的普遍存在持续威胁着数百万人获取安全且价格合理的水源。为了加强对水泵功能的监测,肯尼亚和埃塞俄比亚干旱地区的480台电动地下水水泵上安装了与遥测相连的传感器,旨在改善对这些供水系统的监测,并支持其运行与维护。在本文中,我们描述了两种分类系统的开发与验证,这两种系统旨在识别这些电动水泵的功能状态与非功能状态,一种是基于专家知识的条件分类器,另一种则利用机器学习。鉴于地表水可获取量与地下水水泵使用之间的已知关系,这些分类器将现场传感器数据与降雨和地表水的遥感指标相结合。我们的验证表明,专家分类器的总体水泵状态敏感度(真阳性率)为82%,机器学习分类器为84%。当水泵正在使用时,两种分类器的真阳性率表现均为100%。当水泵未被使用时,专家分类器的特异性(真阴性率)约为50%,机器学习分类器则超过65%。如果将这些检测能力整合到维修服务中,在提供水泵维修的预算资源和机构激励措施的情况下,该地区干旱时期水泵的典型正常运行时间可能会从60%提高到近85%——水泵停机相对风险降低40%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验