特邀评论:应对偏倚分析——以及所有分析——不可避免的缺陷。
Invited Commentary: Dealing With the Inevitable Deficiencies of Bias Analysis-and All Analyses.
出版信息
Am J Epidemiol. 2021 Aug 1;190(8):1617-1621. doi: 10.1093/aje/kwab069.
Lash et al. (Am J Epidemiol. 2021;190(8):1604-1612) have presented detailed critiques of 3 bias analyses that they identify as "suboptimal." This identification raises the question of what "optimal" means for bias analysis, because it is practically impossible to do statistically optimal analyses of typical population studies-with or without bias analysis. At best the analysis can only attempt to satisfy practice guidelines and account for available information both within and outside the study. One should not expect a full accounting for all sources of uncertainty; hence, interval estimates and distributions for causal effects should never be treated as valid uncertainty assessments-they are instead only example analyses that follow from collections of often questionable assumptions. These observations reinforce those of Lash et al. and point to the need for more development of methods for judging bias-parameter distributions and utilization of available information.
拉什等人(Am J Epidemiol. 2021;190(8):1604-1612)对他们认为“不完美”的 3 种偏差分析进行了详细的批评。这种识别提出了一个问题,即对于偏差分析来说,“最优”意味着什么,因为对于典型的人群研究,无论是否进行偏差分析,实际上都不可能进行统计学上最优的分析。最好的分析只能尝试满足实践指南,并考虑到研究内外的可用信息。人们不应该期望对所有不确定性来源都有充分的说明;因此,因果效应的区间估计和分布不应被视为有效的不确定性评估——它们只是根据经常有问题的假设进行的示例分析。这些观察结果加强了拉什等人的观点,并指出需要进一步开发判断偏差参数分布的方法和利用现有信息。