Koemets E, Leonov I, Bykov M, Bykova E, Chariton S, Aprilis G, Fedotenko T, Clément S, Rouquette J, Haines J, Cerantola V, Glazyrin K, McCammon C, Prakapenka V B, Hanfland M, Liermann H-P, Svitlyk V, Torchio R, Rosa A D, Irifune T, Ponomareva A V, Abrikosov I A, Dubrovinskaia N, Dubrovinsky L
Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany.
Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université de Montpellier, F-34095 Montpellier Cedex 5, France.
Phys Rev Lett. 2021 Mar 12;126(10):106001. doi: 10.1103/PhysRevLett.126.106001.
Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe_{2}O_{3} and the appearance of FeO_{2}. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO_{2} and isostructural FeO_{2}H_{0.5} is ferric (Fe^{3+}), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
众所周知,极端压力和温度会极大地影响氧化铁的化学性质,导致形成许多同系物系列nFeOmFe₂O₃的化合物,并出现FeO₂。在此,基于原位单晶X射线衍射、穆斯堡尔光谱、X射线吸收光谱以及密度泛函理论+动态平均场理论计算的结果,我们证明高压立方FeO₂和等结构的FeO₂H₀.₅中的铁为三价铁(Fe³⁺),且氧的形式化合价小于2。氧的化合价从氧化物中常见的2降低至1.5,可以通过氧位点处形成局域空穴来解释。