Suppr超能文献

使用机器学习和药效计量学建模鉴定高维组学生物标志物以预测肿瘤生长动态。

Identification of high-dimensional omics-derived predictors for tumor growth dynamics using machine learning and pharmacometric modeling.

机构信息

Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.

Mathematical Institute, Leiden University, Leiden, The Netherlands.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2021 Apr;10(4):350-361. doi: 10.1002/psp4.12603. Epub 2021 Apr 8.

Abstract

Pharmacometric modeling can capture tumor growth inhibition (TGI) dynamics and variability. These approaches do not usually consider covariates in high-dimensional settings, whereas high-dimensional molecular profiling technologies ("omics") are being increasingly considered for prediction of anticancer drug treatment response. Machine learning (ML) approaches have been applied to identify high-dimensional omics predictors for treatment outcome. Here, we aimed to combine TGI modeling and ML approaches for two distinct aims: omics-based prediction of tumor growth profiles and identification of pathways associated with treatment response and resistance. We propose a two-step approach combining ML using least absolute shrinkage and selection operator (LASSO) regression with pharmacometric modeling. We demonstrate our workflow using a previously published dataset consisting of 4706 tumor growth profiles of patient-derived xenograft (PDX) models treated with a variety of mono- and combination regimens. Pharmacometric TGI models were fit to the tumor growth profiles. The obtained empirical Bayes estimates-derived TGI parameter values were regressed using the LASSO on high-dimensional genomic copy number variation data, which contained over 20,000 variables. The predictive model was able to decrease median prediction error by 4% as compared with a model without any genomic information. A total of 74 pathways were identified as related to treatment response or resistance development by LASSO, of which part was verified by literature. In conclusion, we demonstrate how the combined use of ML and pharmacometric modeling can be used to gain pharmacological understanding in genomic factors driving variation in treatment response.

摘要

药效学建模可以捕捉肿瘤生长抑制(TGI)动力学和变异性。这些方法通常不考虑高维环境中的协变量,而高维分子谱分析技术(“组学”)正越来越多地被用于预测抗癌药物治疗反应。机器学习(ML)方法已被应用于识别高维组学预测因子以预测治疗结果。在这里,我们旨在结合 TGI 建模和 ML 方法来实现两个不同的目标:基于组学的肿瘤生长曲线预测和鉴定与治疗反应和耐药性相关的途径。我们提出了一种两步法,将基于最小绝对值收缩和选择算子(LASSO)回归的 ML 与药效学建模相结合。我们使用之前发表的数据集来演示我们的工作流程,该数据集包含 4706 个患者来源的异种移植(PDX)模型的肿瘤生长曲线,这些模型接受了各种单药和联合治疗方案的治疗。对肿瘤生长曲线进行药效学 TGI 模型拟合。使用 LASSO 将获得的经验贝叶斯估计衍生的 TGI 参数值回归到高维基因组拷贝数变异数据上,该数据包含超过 20,000 个变量。与没有任何基因组信息的模型相比,该预测模型能够将中位预测误差降低 4%。通过 LASSO 共鉴定出 74 条与治疗反应或耐药性发展相关的途径,其中部分途径通过文献得到了验证。总之,我们展示了如何结合使用 ML 和药效学建模来深入了解基因组因素在治疗反应中的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f2a/8099445/3a549c0b76f2/PSP4-10-350-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验