Department of Environmental Dynamics and Management, Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama Higashi, Hiroshima 739-8521, Japan.
Department of Environmental Dynamics and Management, Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama Higashi, Hiroshima 739-8521, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama Higashi, Hiroshima 739-8521, Japan.
Sci Total Environ. 2021 Aug 10;781:146683. doi: 10.1016/j.scitotenv.2021.146683. Epub 2021 Mar 24.
In this study, we experimentally investigated the magnitude of the peroxynitrite sink: a radical-radical consumption mechanism for photochemically generated nitric oxide (NO) in surface seawater that describes NO reactions with co-generated superoxide (O) to yield peroxynitrite (ONOO). Measurements of photochemically generated NO, O and ONOO were conducted on seawater samples obtained from the Seto Inland Sea, Japan. Nitrite, dissolved organic carbon, chromophoric dissolved organic matter and pH were also measured in the same samples using standard analytical methods. The average photoformation rates of NO, O and ONOO were: 1.78 × 10 M s, 7.19 × 10 M s and 9.0 × 10 M s, respectively, and the average steady-state concentrations were: 67.28 × 10 M, 2.69 × 10 M and 2.26 × 10 M, respectively. Further evaluation of the experimental data indicated that the existence of ONOO in seawater strongly depends on, and is limited by, photoformed NO. Seawater alkalinity favored the consumption of photoformed NO· via the peroxynitrite sink. The magnitude of average sinks (%) calculated from kinetic estimates and experimental data were: 0.17% and 0.11%, respectively. These results show that the consumption of photochemically generated NO· via the peroxynitrite sink is not significant in surface seawater. Therefore, we propose that sea-to-air efflux across the marine boundary layer is the major sink of photochemical NO· and can be regarded as a non-anthropogenic contributor to daytime atmospheric NO concentrations.
在这项研究中,我们通过实验研究了过氧亚硝酸盐汇的幅度:这是一种描述在表面海水中光化学生成的一氧化氮(NO)与共生成的超氧化物(O)反应生成过氧亚硝酸盐(ONOO)的自由基-自由基消耗机制。在日本濑户内海获得的海水样本中进行了光化学生成的 NO、O 和 ONOO 的测量。使用标准分析方法还测量了相同样品中的亚硝酸盐、溶解有机碳、发色溶解有机物和 pH 值。NO、O 和 ONOO 的平均光形成速率分别为 1.78×10-5 M s-1、7.19×10-5 M s-1 和 9.0×10-5 M s-1,平均稳态浓度分别为 67.28×10-6 M、2.69×10-5 M 和 2.26×10-5 M。对实验数据的进一步评估表明,海水中的 ONOO 的存在强烈依赖于和受限于光化学形成的 NO。海水碱度有利于通过过氧亚硝酸盐汇消耗光化学形成的 NO。根据动力学估算和实验数据计算的平均汇(%)分别为 0.17%和 0.11%。这些结果表明,通过过氧亚硝酸盐汇消耗光化学生成的 NO 并不重要在表层海水中。因此,我们提出,穿过海洋边界层的海-气逸出是光化学 NO 的主要汇,并可被视为大气 NO 浓度的非人为贡献因素。