使用支持智能手机的成像光电容积脉搏波描记法进行稳健的非接触式外周血氧饱和度测量。

Robust non-contact peripheral oxygenation saturation measurement using smartphone-enabled imaging photoplethysmography.

作者信息

Sun Zhiyuan, He Qinghua, Li Yuandong, Wang Wendy, Wang Ruikang K

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA.

The authors contributed equally.

出版信息

Biomed Opt Express. 2021 Mar 1;12(3):1746-1760. doi: 10.1364/BOE.419268.

Abstract

We propose a robust non-contact method to accurately estimate peripheral oxygen saturation (SpO) using a smartphone-based imaging photoplethysmography. The method utilizes the built-in color camera as a remote sensor and the built-in flashlight as illumination to estimate the SpO. Following the ratio of ratios between green and red channels, we introduce a multiple linear regression algorithm to improve the SpO estimation. The algorithm considers the ratio of ratios and the reflectance images recorded at the RGB channels during a calibration process to obtain a set of weighting coefficients to weigh each contributor to the final determination of SpO. We demonstrate the proposed smartphone-based method of estimating the SpO on five healthy volunteers whose arms are conditioned by a manual pressure cuff to manipulate the SpO between 90∼100% as detected simultaneously by a medical-grade pulse oximeter. Experimental results indicate that the overall estimated error between the smartphone and the reference pulse oximeter is 0.029 ± 1.141%, leading to a 43% improvement over the conventional ratio of ratios method (0.008 ± 2.008%). In addition, the data sampling time in the current method is 2 seconds, similar to the sampling cycle used in the commercial medical-grade pulse oximeters.

摘要

我们提出了一种稳健的非接触式方法,通过基于智能手机的成像光电容积脉搏波描记法来准确估计外周血氧饱和度(SpO)。该方法利用内置彩色相机作为远程传感器,并以内置手电筒作为照明来估计SpO。遵循绿色和红色通道之间的比率之比,我们引入了一种多元线性回归算法来改进SpO估计。该算法在校准过程中考虑比率之比以及在RGB通道记录的反射率图像,以获得一组加权系数,用于权衡对最终SpO测定的每个贡献因素。我们在五名健康志愿者身上演示了所提出的基于智能手机的SpO估计方法,这些志愿者的手臂通过手动加压袖带进行调节,以使SpO在90%至100%之间变化,同时由医用级脉搏血氧仪进行检测。实验结果表明,智能手机与参考脉搏血氧仪之间的总体估计误差为0.029±1.141%,比传统的比率之比方法(0.008±2.008%)提高了43%。此外,当前方法的数据采样时间为2秒,与商用医用级脉搏血氧仪使用的采样周期相似。

相似文献

[9]

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索