Suppr超能文献

DRNet:一种基于深度的 6D 物体位姿估计回归网络。

DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation.

机构信息

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Sensors (Basel). 2021 Mar 1;21(5):1692. doi: 10.3390/s21051692.

Abstract

This paper focuses on 6Dof object pose estimation from a single RGB image. We tackle this challenging problem with a two-stage optimization framework. More specifically, we first introduce a translation estimation module to provide an initial translation based on an estimated depth map. Then, a pose regression module combines the ROI (Region of Interest) and the original image to predict the rotation and refine the translation. Compared with previous end-to-end methods that directly predict rotations and translations, our method can utilize depth information as weak guidance and significantly reduce the searching space for the subsequent module. Furthermore, we design a new loss function function for symmetric objects, an approach that has handled such exceptionally difficult cases in prior works. Experiments show that our model achieves state-of-the-art object pose estimation for the YCB- video dataset (Yale-CMU-Berkeley).

摘要

本文主要研究基于单张 RGB 图像的 6DoF 物体位姿估计。我们采用两阶段优化框架来解决这个具有挑战性的问题。具体来说,我们首先引入一个平移估计模块,基于估计的深度图提供初始平移。然后,位姿回归模块结合 ROI(感兴趣区域)和原始图像来预测旋转并精修平移。与之前直接预测旋转和平移的端到端方法相比,我们的方法可以利用深度信息作为弱引导,显著缩小后续模块的搜索空间。此外,我们为对称物体设计了新的损失函数,这是之前的工作中处理此类特殊困难情况的方法。实验表明,我们的模型在 YCB-video 数据集(耶鲁大学-卡内基梅隆大学-伯克利分校)上实现了最先进的物体位姿估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82dc/7957651/66264766379b/sensors-21-01692-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验