Suppr超能文献

物联网数据验证在物流链可追溯性智能合约中的应用。

IoT Data Qualification for a Logistic Chain Traceability Smart Contract.

机构信息

ALIS International, 4 Rue du Meunier, 95724 Roissy-en-France, France.

Samovar, Télécom SudParis, Institut Polytechnique de Paris, 9 rue Charles Fourier, 91011 Evry-Courcouronnes CEDEX, France.

出版信息

Sensors (Basel). 2021 Mar 23;21(6):2239. doi: 10.3390/s21062239.

Abstract

In the logistic chain domain, the traceability of in their entire delivery process from the to the involves many stakeholders. From the traceability data, contractual decisions may be taken such as incident detection, validation of the delivery or billing. The stakeholders require transparency in the whole process. The combination of the Internet of Things (IoT) and the blockchain paradigms helps in the development of automated and trusted systems. In this context, ensuring the quality of the IoT data is an absolute requirement for the adoption of those technologies. In this article, we propose an approach to assess the data quality (DQ) of IoT data sources using a logistic traceability smart contract developed on top of a blockchain. We select the quality dimensions relevant to our context, namely accuracy, completeness, consistency and currentness, with a proposition of their corresponding measurement methods. We also propose a data quality model specific to the logistic chain domain and a distributed traceability architecture. The evaluation of the proposal shows the capacity of the proposed method to assess the IoT data quality and ensure the user agreement on the data qualification rules. The proposed solution opens new opportunities in the development of automated logistic traceability systems.

摘要

在物流链领域,从生产商到最终用户,在整个交付过程中对产品的可追溯性涉及许多利益相关者。通过追溯数据,可以做出诸如事件检测、交付验证或计费等契约决策。各利益相关者要求整个过程是透明的。物联网(IoT)和区块链范例的结合有助于开发自动化和可信系统。在这种情况下,确保 IoT 数据的质量是采用这些技术的绝对要求。在本文中,我们提出了一种使用基于区块链开发的物流可追溯性智能合约来评估 IoT 数据源的数据质量(DQ)的方法。我们选择了与我们的上下文相关的质量维度,即准确性、完整性、一致性和时效性,并提出了相应的度量方法。我们还提出了一个特定于物流链领域的数据质量模型和分布式可追溯性架构。对提议的评估表明,所提出的方法能够评估 IoT 数据质量,并确保用户同意数据质量规则。所提出的解决方案为开发自动化物流可追溯性系统开辟了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b081/8005206/82e20328665a/sensors-21-02239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验