Suppr超能文献

多尺度特征金字塔网络:基于 ResNet 的重度遮挡行人检测网络。

Multi-Scale Feature Pyramid Network: A Heavily Occluded Pedestrian Detection Network Based on ResNet.

机构信息

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China.

Shanghai Aerospace Control Technology Institute, Shanghai 201109, China.

出版信息

Sensors (Basel). 2021 Mar 5;21(5):1820. doi: 10.3390/s21051820.

Abstract

The existing pedestrian detection algorithms cannot effectively extract features of heavily occluded targets which results in lower detection accuracy. To solve the heavy occlusion in crowds, we propose a multi-scale feature pyramid network based on ResNet (MFPN) to enhance the features of occluded targets and improve the detection accuracy. MFPN includes two modules, namely double feature pyramid network (FPN) integrated with ResNet (DFR) and repulsion loss of minimum (RLM). We propose the double FPN which improves the architecture to further enhance the semantic information and contours of occluded pedestrians, and provide a new way for feature extraction of occluded targets. The features extracted by our network can be more separated and clearer, especially those heavily occluded pedestrians. Repulsion loss is introduced to improve the loss function which can keep predicted boxes away from the ground truths of the unrelated targets. Experiments carried out on the public CrowdHuman dataset, we obtain 90.96% AP which yields the best performance, 5.16% AP gains compared to the FPN-ResNet50 baseline. Compared with the state-of-the-art works, the performance of the pedestrian detection system has been boosted with our method.

摘要

现有的行人检测算法无法有效地提取严重遮挡目标的特征,导致检测精度较低。为了解决人群中的严重遮挡问题,我们提出了一种基于 ResNet 的多尺度特征金字塔网络 (MFPN),以增强遮挡目标的特征并提高检测精度。MFPN 包括两个模块,即与 ResNet 集成的双特征金字塔网络 (DFR) 和最小排斥损失 (RLM)。我们提出了双 FPN,改进了架构,以进一步增强遮挡行人的语义信息和轮廓,为遮挡目标的特征提取提供了新的途径。我们的网络提取的特征可以更加分离和清晰,特别是那些严重遮挡的行人。引入排斥损失来改进损失函数,可以使预测框远离无关目标的真实框。在公共的 CrowdHuman 数据集上进行的实验中,我们获得了 90.96%的 AP,性能最佳,比 FPN-ResNet50 基线提高了 5.16%的 AP。与最先进的工作相比,我们的方法提高了行人检测系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb77/7961544/54a12f2fb8b5/sensors-21-01820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验